Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Genet ; 54(7): 963-975, 2022 07.
Article in English | MEDLINE | ID: mdl-35773407

ABSTRACT

The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).


Subject(s)
Colorectal Neoplasms , Neoplasms, Glandular and Epithelial , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial Cells/pathology , Humans , Microsatellite Instability , Microsatellite Repeats/genetics , Neoplasms, Glandular and Epithelial/genetics , Transcriptome/genetics
2.
Immunity ; 54(8): 1825-1840.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34270940

ABSTRACT

Hepatocellular carcinoma (HCC) often develops following chronic hepatitis B virus (HBV) infection and responds poorly to immune checkpoint blockade. Here, we examined the antigen specificities of HCC-infiltrating T cells and their relevance to tumor control. Using highly multiplexed peptide-MHC tetramer staining of unexpanded cells from blood, liver, and tumor tissues from 46 HCC patients, we detected 91 different antigen-specific CD8+ T cell populations targeting HBV, neoantigen, tumor-associated, and disease-unrelated antigens. Parallel high-dimensional analysis delineated five distinct antigen-specific tissue-resident memory T (Trm) cell populations. Intratumoral and intrahepatic HBV-specific T cells were enriched for two Trm cell subsets that were PD-1loTOXlo, despite being clonally expanded. High frequencies of intratumoral terminally exhausted T cells were uncommon. Patients with tumor-infiltrating HBV-specific CD8+ Trm cells exhibited longer-term relapse-free survival. Thus, non-terminally exhausted HBV-specific CD8+ Trm cells show hallmarks of active involvement and effective antitumor response, implying that these cells could be harnessed for therapeutic purposes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/immunology , Immunologic Memory/immunology , Liver Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Antigens, Neoplasm/immunology , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , High Mobility Group Proteins/metabolism , Humans , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/prevention & control , Programmed Cell Death 1 Receptor/metabolism , Tumor Cells, Cultured
3.
Nat Commun ; 12(1): 2229, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850132

ABSTRACT

Profiling of circulating tumor DNA (ctDNA) may offer a non-invasive approach to monitor disease progression. Here, we develop a quantitative method, exploiting local tissue-specific cell-free DNA (cfDNA) degradation patterns, that accurately estimates ctDNA burden independent of genomic aberrations. Nucleosome-dependent cfDNA degradation at promoters and first exon-intron junctions is strongly associated with differential transcriptional activity in tumors and blood. A quantitative model, based on just 6 regulatory regions, could accurately predict ctDNA levels in colorectal cancer patients. Strikingly, a model restricted to blood-specific regulatory regions could predict ctDNA levels across both colorectal and breast cancer patients. Using compact targeted sequencing (<25 kb) of predictive regions, we demonstrate how the approach could enable quantitative low-cost tracking of ctDNA dynamics and disease progression.


Subject(s)
Cell-Free Nucleic Acids/metabolism , Circulating Tumor DNA/metabolism , DNA Fragmentation , Tumor Burden/physiology , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Genomics , Humans , Mutation
4.
Sci Transl Med ; 8(345): 345ra89, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27358499

ABSTRACT

Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.


Subject(s)
Colorectal Neoplasms/pathology , Neoplastic Cells, Circulating , Cell Line , Colorectal Neoplasms/genetics , Humans , Keratins/genetics , Keratins/metabolism , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Multigene Family/genetics , Prognosis , Tumor Cells, Cultured
5.
Nat Med ; 22(6): 666-71, 2016 06.
Article in English | MEDLINE | ID: mdl-27135739

ABSTRACT

Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.


Subject(s)
Cachexia/metabolism , Fatty Acids/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Neoplasms/metabolism , Oxidation-Reduction , Stem Cells/metabolism , Aged , Animals , Blotting, Western , Cachexia/etiology , Cell Line , Cell Line, Tumor , Cytokines/drug effects , Cytokines/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Metabolomics , Mice , Middle Aged , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Neoplasms/complications , Oxidative Stress/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL