Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 228(5): 555-563, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37062677

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Antiviral Agents , Saccharomyces cerevisiae , Antibodies, Neutralizing/therapeutic use , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/therapeutic use
2.
J Clin Immunol ; 43(5): 940-950, 2023 07.
Article in English | MEDLINE | ID: mdl-36826743

ABSTRACT

PURPOSE: Most individuals with antibody deficiency (hypogammaglobulinemia) need immunoglobulin replacement therapy (IgG-RT) from healthy plasma donors to stay clear of infections. However, a small subset of hypogammaglobulinemic patients do not require this substitution therapy. We set out to investigate this clinical conundrum by asking whether the peripheral B cell receptor repertoires differ between antibody-deficient patients who do and do not need IgG-RT. METHODS: We sequenced and analyzed IgG and IgM heavy chain B cell receptor repertoires from peripheral blood mononuclear cells (PBMCs) isolated from patients with low serum IgG concentrations who did or did not require IgG-RT. RESULTS: Compared to the patients who did not need IgG-RT, those who needed IgG-RT had higher numbers of IgG antibody clones, higher IgM diversity, and less oligoclonal IgG and IgM repertoires. The patient cohorts had different heavy chain variable gene usage, and the patients who needed IgG-RT had elevated frequencies of IgG clones with higher germline identity (i.e., fewer somatic hypermutations). CONCLUSION: Antibody-deficient patients with infection susceptibility who needed IgG-RT had more diverse peripheral antibody repertoires that were less diverged from germline and thus may not be as optimal for targeting pathogens, possibly contributing to infection susceptibility.


Subject(s)
Immunoglobulin G , Leukocytes, Mononuclear , Humans , Immunoglobulin M , Base Sequence , Receptors, Antigen, B-Cell/genetics
3.
Pathogens ; 11(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35890050

ABSTRACT

Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.

4.
MAbs ; 14(1): 2069075, 2022.
Article in English | MEDLINE | ID: mdl-35482911

ABSTRACT

The antibody drug field has continually sought improvements to methods for candidate discovery and engineering. Historically, most such methods have been laboratory-based, but informatics methods have recently started to make an impact. Deep learning, a subfield of machine learning, is rapidly gaining prominence in the biomedical research. Recent advances in microfluidics technologies and next-generation sequencing have not only revolutionized therapeutic antibody discovery, but also contributed to a vast amount of antibody repertoire sequencing data, providing opportunities for deep learning-based applications. Previously, we used microfluidics, yeast display, and deep sequencing to generate a panel of binder and non-binder antibody sequences to the cancer immunotherapy targets PD-1 and CTLA-4. Here we encoded the antibody light and heavy chain complementarity-determining regions (CDR3s) into antibody images, then built and trained convolutional neural network models to classify binders and non-binders. To improve model interpretability, we performed in silico mutagenesis to identify CDR3 residues that were important for binder classification. We further built generative deep learning models using generative adversarial network models to produce synthetic antibodies against PD-1 and CTLA-4. Our models generated variable length CDR3 sequences that resemble real sequences. Overall, our study demonstrates that deep learning methods can be leveraged to mine and learn patterns in antibody sequences, offering insights into antibody engineering, optimization, and discovery.


Subject(s)
Deep Learning , Antibodies , CTLA-4 Antigen , Complementarity Determining Regions/chemistry , Programmed Cell Death 1 Receptor
5.
BMC Biol ; 19(1): 107, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34030676

ABSTRACT

BACKGROUND: The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-ß has been shown to contribute to T cell exclusion, and anti-TGF-ß improves anti-PD-L1 efficacy in vivo. However, TGF-ß inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-ß blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-ß blockade in the tumor microenvironment should be further elucidated. RESULTS: We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-ß blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1. CONCLUSIONS: Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-ß combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.


Subject(s)
Neoplasms , Animals , B7-H1 Antigen/genetics , Mice , Transcriptome , Transforming Growth Factor beta , Tumor Microenvironment
6.
Nat Biotechnol ; 39(8): 989-999, 2021 08.
Article in English | MEDLINE | ID: mdl-33859400

ABSTRACT

Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.


Subject(s)
B-Lymphocytes/immunology , COVID-19/therapy , Globulins/biosynthesis , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , CHO Cells , Cricetulus , Enzyme-Linked Immunosorbent Assay , Globulins/immunology , Humans , Immunization, Passive , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Zika Virus/immunology , COVID-19 Serotherapy
7.
MAbs ; 12(1): 1803646, 2020.
Article in English | MEDLINE | ID: mdl-32744131

ABSTRACT

IN VITRO: affinity maturation of therapeutic monoclonal antibodies is commonly applied to achieve desired properties, such as improved binding kinetics and affinity. Currently there are no universally accepted protocols for generation of variegated antibody libraries or selection thereof. Here, we performed affinity maturation using a yeast-based single-chain variable fragment (scFv) expression system to compare two mutagenesis methods: random mutagenesis across the entire V(D)J region by error-prone PCR, and a novel combinatorial mutagenesis process limited to the complementarity-determining regions (CDRs). We applied both methods of mutagenesis to four human antibodies against well-known immuno-oncology target proteins. Detailed sequence analysis showed an even mutational distribution across the entire length of the scFv for the error-prone PCR method and an almost exclusive targeting of the CDRs for the combinatorial method. Though there were distinct mutagenesis profiles for each target antibody and mutagenesis method, we found that both methods improved scFv affinity with similar efficiency. When a subset of the affinity-matured antibodies was expressed as full-length immunoglobulin, the measured affinity constants were mostly comparable to those of the respective scFv, but the full-length antibodies were inferior to their scFv counterparts for one of the targets. Furthermore, we found that improved affinity for the full-length antibody did not always translate into enhanced binding to cell-surface expressed antigen or improved immune checkpoint blocking ability, suggesting that screening with full-length antibody or antigen-binding fragment formats might be advantageous and the subject of a future study.


Subject(s)
Antibody Affinity/genetics , Mutagenesis , Single-Chain Antibodies , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Humans , Polymerase Chain Reaction , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
8.
Nat Biotechnol ; 38(5): 609-619, 2020 05.
Article in English | MEDLINE | ID: mdl-32393905

ABSTRACT

T cells engineered to express antigen-specific T cell receptors (TCRs) are potent therapies for viral infections and cancer. However, efficient identification of clinical candidate TCRs is complicated by the size and complexity of T cell repertoires and the challenges of working with primary T cells. Here we present a high-throughput method to identify TCRs with high functional avidity from diverse human T cell repertoires. The approach used massively parallel microfluidics to generate libraries of natively paired, full-length TCRαß clones, from millions of primary T cells, which were then expressed in Jurkat cells. The TCRαß-Jurkat libraries enabled repeated screening and panning for antigen-reactive TCRs using peptide major histocompatibility complex binding and cellular activation. We captured more than 2.9 million natively paired TCRαß clonotypes from six healthy human donors and identified rare (<0.001% frequency) viral-antigen-reactive TCRs. We also mined a tumor-infiltrating lymphocyte sample from a patient with melanoma and identified several tumor-specific TCRs, which, after expression in primary T cells, led to tumor cell killing.


Subject(s)
Antigens/analysis , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/cytology , Cell Engineering , Gene Library , Humans , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , T-Lymphocytes/immunology , Viruses/immunology
9.
Antibodies (Basel) ; 8(1)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-31544823

ABSTRACT

To discover therapeutically relevant antibody candidates, many groups use mouse immunization followed by hybridoma generation or B cell screening. One modern approach is to screen B cells by generating natively paired single chain variable fragment (scFv) display libraries in yeast. Such methods typically rely on soluble antigens for scFv library screening. However, many therapeutically relevant cell-surface targets are difficult to express in a soluble protein format, complicating discovery. In this study, we developed methods to screen humanized mouse-derived yeast scFv libraries using recombinant OX40 protein in cell lysate. We used deep sequencing to compare screening with cell lysate to screening with soluble OX40 protein, in the context of mouse immunizations using either soluble OX40 or OX40-expressing cells and OX40-encoding DNA vector. We found that all tested methods produce a unique diversity of scFv binders. However, when we reformatted forty-one of these scFv as full-length monoclonal antibodies (mAbs), we observed that mAbs identified using soluble antigen immunization with cell lysate sorting always bound cell surface OX40, whereas other methods had significant false positive rates. Antibodies identified using soluble antigen immunization and cell lysate sorting were also significantly more likely to activate OX40 in a cellular assay. Our data suggest that sorting with OX40 protein in cell lysate is more likely than other methods to retain the epitopes required for antibody-mediated OX40 agonism.

10.
MAbs ; 11(5): 870-883, 2019 07.
Article in English | MEDLINE | ID: mdl-30898066

ABSTRACT

Immunization of mice followed by hybridoma or B-cell screening is one of the most common antibody discovery methods used to generate therapeutic monoclonal antibody (mAb) candidates. There are a multitude of different immunization protocols that can generate an immune response in animals. However, an extensive analysis of the antibody repertoires that these alternative immunization protocols can generate has not been performed. In this study, we immunized mice that transgenically express human antibodies with either programmed cell death 1 protein or cytotoxic T-lymphocyte associated protein 4 using four different immunization protocols, and then utilized a single cell microfluidic platform to generate tissue-specific, natively paired immunoglobulin (Ig) repertoires from each method and enriched for target-specific binders using yeast single-chain variable fragment (scFv) display. We deep sequenced the scFv repertoires from both the pre-sort and post-sort libraries. All methods and both targets yielded similar oligoclonality, variable (V) and joining (J) gene usage, and divergence from germline of enriched libraries. However, there were differences between targets and/or immunization protocols for overall clonal counts, complementarity-determining region 3 (CDR3) length, and antibody/CDR3 sequence diversity. Our data suggest that, although different immunization protocols may generate a response to an antigen, performing multiple immunization protocols in parallel can yield greater Ig diversity. We conclude that modern microfluidic methods, followed by an extensive molecular genomic analysis of antibody repertoires, can be used to quickly analyze new immunization protocols or mouse platforms.


Subject(s)
Antibodies, Monoclonal, Humanized/genetics , Antibody Diversity , Immunization/methods , Microfluidics/methods , Animals , Antibodies, Monoclonal, Humanized/immunology , B-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Complementarity Determining Regions/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Hybridomas , Mice , Mice, Transgenic , Peptide Library , Programmed Cell Death 1 Receptor/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
11.
Proc Natl Acad Sci U S A ; 115(50): E11701-E11710, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30463956

ABSTRACT

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti-PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


Subject(s)
Genes, Neoplasm , Neoplasms/genetics , Neoplasms/immunology , Polymorphism, Genetic , Aminopeptidases/genetics , Female , Gene Expression Regulation, Neoplastic , Germ-Line Mutation , Humans , Immunity, Cellular/genetics , Immunotherapy , Inducible T-Cell Co-Stimulator Ligand/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Neoplasms/therapy , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy
13.
Nat Immunol ; 19(3): 302-314, 2018 03.
Article in English | MEDLINE | ID: mdl-29476184

ABSTRACT

The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.


Subject(s)
Genetic Variation/immunology , Immunity, Innate/genetics , Adaptive Immunity/genetics , Adult , Aged , Female , Genome-Wide Association Study , Humans , Immunophenotyping , Male , Middle Aged , Young Adult
14.
Mol Cell ; 63(1): 167-78, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27373332

ABSTRACT

R-loops are three-stranded nucleic acid structures formed upon annealing of an RNA strand to one strand of duplex DNA. We profiled R-loops using a high-resolution, strand-specific methodology in human and mouse cell types. R-loops are prevalent, collectively occupying up to 5% of mammalian genomes. R-loop formation occurs over conserved genic hotspots such as promoter and terminator regions of poly(A)-dependent genes. In most cases, R-loops occur co-transcriptionally and undergo dynamic turnover. Detailed epigenomic profiling revealed that R-loops associate with specific chromatin signatures. At promoters, R-loops associate with a hyper-accessible state characteristic of unmethylated CpG island promoters. By contrast, terminal R-loops associate with an enhancer- and insulator-like state and define a broad class of transcription terminators. Together, this suggests that the retention of nascent RNA transcripts at their site of expression represents an abundant, dynamic, and programmed component of the mammalian chromatin that affects chromatin patterning and the control of gene expression.


Subject(s)
DNA/genetics , Epigenesis, Genetic , RNA/genetics , Transcription, Genetic , Transcriptome , Animals , Base Sequence , Chromatin/genetics , Chromatin/metabolism , Codon, Terminator , Computational Biology , Conserved Sequence , DNA/chemistry , DNA/metabolism , Databases, Genetic , Epigenomics/methods , Humans , K562 Cells , Mice , NIH 3T3 Cells , Nucleic Acid Conformation , Promoter Regions, Genetic , RNA/chemistry , RNA/metabolism , Structure-Activity Relationship
15.
Elife ; 42015 Jul 16.
Article in English | MEDLINE | ID: mdl-26182405

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a severe childhood inflammatory disorder that shows clinical and genetic overlap with systemic lupus erythematosus (SLE). AGS is thought to arise from the accumulation of incompletely metabolized endogenous nucleic acid species owing to mutations in nucleic acid-degrading enzymes TREX1 (AGS1), RNase H2 (AGS2, 3 and 4), and SAMHD1 (AGS5). However, the identity and source of such immunogenic nucleic acid species remain undefined. Using genome-wide approaches, we show that fibroblasts from AGS patients with AGS1-5 mutations are burdened by excessive loads of RNA:DNA hybrids. Using MethylC-seq, we show that AGS fibroblasts display pronounced and global loss of DNA methylation and demonstrate that AGS-specific RNA:DNA hybrids often occur within DNA hypomethylated regions. Altogether, our data suggest that RNA:DNA hybrids may represent a common immunogenic form of nucleic acids in AGS and provide the first evidence of epigenetic perturbations in AGS, furthering the links between AGS and SLE.


Subject(s)
Autoimmune Diseases of the Nervous System/pathology , DNA Methylation , DNA/metabolism , Nervous System Malformations/pathology , RNA/metabolism , Cells, Cultured , DNA/genetics , DNA/immunology , Epigenesis, Genetic , Fibroblasts/pathology , Humans , Immunologic Factors/metabolism , RNA/genetics , RNA/immunology
16.
Genome Res ; 23(10): 1590-600, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23868195

ABSTRACT

Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can distinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci are enriched in distinct chromosomal territories reflecting the intrinsic strength of their protection against DNA methylation. Interestingly, we show that strong CGI promoters are depleted from the X chromosome while weak CGIs are enriched, a property consistent with the acquisition of DNA methylation during dosage compensation. Furthermore, we identify a third class of CGI promoters based on its unique GC skew profile and show that this gene set is enriched for Polycomb group targets. Lastly, we show that nearly 2000 genes harbor GC skew at their 3' ends and that these genes are preferentially located in gene-dense regions and tend to be closely arranged. Genomic profiling of R-loops accordingly showed that a large proportion of genes with terminal GC skew form R-loops at their 3' ends, consistent with a role for these structures in permitting efficient transcription termination. Altogether, we show that GC skew and R-loop formation offer significant insights into the epigenetic regulation, genomic organization, and function of human genes.


Subject(s)
Chromosomes, Human, X/genetics , CpG Islands , DNA/chemistry , Epigenesis, Genetic , Genome, Human , Transcription Termination, Genetic , Cells, Cultured , Chromosomes, Human/genetics , DNA Methylation , Dosage Compensation, Genetic , Epigenesis, Genetic/genetics , Gene Dosage , Gene Expression Profiling , Gene Ontology , Histones/genetics , Histones/metabolism , Humans , Nucleic Acid Conformation , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...