Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Ecotoxicol Environ Saf ; 283: 116823, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096687

ABSTRACT

BACKGROUND: This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS: A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 µg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 µg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 µg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION: We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.

2.
Environ Int ; 190: 108843, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38972117

ABSTRACT

BACKGROUND: Greenspaces contribute positively to mental and physical well-being, promote social cohesion, and alleviate environmental stressors, such as air pollution. Ecological studies suggest that greenspace may affect incidence and severity of Coronavirus Disease 2019 (COVID-19). OBJECTIVE: This study examines the association between residential greenspace and COVID-19 related hospitalization and death. METHOD: In this retrospective cohort based on patient records from the Greater Manchester Care Records, all first COVID-19 cases diagnosed between March 1, 2020, and May 31, 2022 were followed until COVID-19 related hospitalization or death within 28 days. Residential greenspace availability was assessed using the Normalized Difference Vegetation Index per lower super output area in Greater Manchester. The association of greenspace with COVID-19 hospitalization and mortality were estimated using multivariate logistic regression models after adjusting for potential individual, temporal, and spatial confounders. We explored potential effect modifications of the associations with greenspace and COVID-19 severity by age, sex, body mass index, smoking, deprivation, and certain comorbidities. Combined effects of greenspace and air pollution (NO2 and PM2.5) were investigated by mutually adjusting pairs with correlation coefficients ≤ 0·7. RESULTS: Significant negative associations were observed between greenspace availability and COVID-19 hospitalization and mortality with odds ratios [OR] (95 % Confidence Intervals [CI]) of 0·96 (0·94-0·97) and 0·84 (0·80-0·88) (per interquartile range [IQR]), respectively. These were significantly modified by deprivation (P-value for interaction < 0.05), showing that those most deprived obtained largest benefits from greenspace. Inclusion of NO2 and PM2.5 diminished associations to null for COVID-19 hospitalization, but only reduced them slightly for mortality, where inverse associations remained. CONCLUSION: In the Greater Manchester area, residential greenspace is associated with reduced risk of hospitalization or death in individuals with COVID-19, with deprived groups obtaining the greatest benefits. Associations were strongest for COVID-19 mortality, which were robust to inclusion of air pollutants in the models.

3.
Environ Int ; 190: 108842, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38970980

ABSTRACT

BACKGROUND: Long-term exposure to road traffic noise is associated with cardiovascular disease, but the evidence on respiratory diseases is just emerging. We aimed to examine the association between long-term exposure to road traffic noise and the incidence of acute lower respiratory infections (ALRIs) in adults. METHODS: We followed 23,141 female nurses (age ≥ 44 years) from the Danish Nurse Cohort from baseline (1993 or 1999) to their first hospital contact (inpatient, outpatient, or emergency room) for ALRI, death, emigration or the end of 2015. The residential annual mean levels of road traffic noise (Lden) during the follow-up were estimated using the Nord2000 model. We applied time-varying Cox models to estimate the association of 3-year mean exposure to Lden with ALRIs incidence and piecewise analysis to estimate the threshold of Lden. We examined the robustness of the results by adjusting for residential exposure to air pollution, and the effect modification by attained age, socioeconomic status (SES), comorbidity, and lifestyle. RESULTS: During 18.5 years of follow-up, 2,004 nurses developed ALRIs. In a linear model, we detected a statistically significant positive association between Lden and ALRI, with a hazard ratio (HR) of 1.11 (95 % confidence interval (CI): 1.04, 1.17) per 9.2 dB (interquartile range, IQR). We observed non-linear association with a threshold at 57 dB, above which the HR was 1.25 (95 % CI: 1.09, 1.43) per IQR. Further adjustment for PM2.5 reduced the HRs slightly to 1.21 (95 % CI: 1.04, 1.40). The associations were stronger for nurses with asthma, and in those with lowest SES. CONCLUSION: We present novel findings in support of the association between long-term exposure to road traffic noise and ALRIs, independent of air pollution, suggesting noise as a risk factor for infectious respiratory diseases.

4.
Environ Epidemiol ; 8(4): e319, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38983882

ABSTRACT

Background: Available evidence suggests a link between exposure to transportation noise and an increased risk of obesity. We aimed to assess exposure-response functions for long-term residential exposure to road traffic, railway and aircraft noise, and markers of obesity. Methods: Our cross-sectional study is based on pooled data from 11 Nordic cohorts, including up to 162,639 individuals with either measured (69.2%) or self-reported obesity data. Residential exposure to transportation noise was estimated as a time-weighted average Lden 5 years before recruitment. Adjusted linear and logistic regression models were fitted to assess beta coefficients and odds ratios (OR) with 95% confidence intervals (CI) for body mass index, overweight, and obesity, as well as for waist circumference and central obesity. Furthermore, natural splines were fitted to assess the shape of the exposure-response functions. Results: For road traffic noise, the OR for obesity was 1.06 (95% CI = 1.03, 1.08) and for central obesity 1.03 (95% CI = 1.01, 1.05) per 10 dB Lden. Thresholds were observed at around 50-55 and 55-60 dB Lden, respectively, above which there was an approximate 10% risk increase per 10 dB Lden increment for both outcomes. However, linear associations only occurred in participants with measured obesity markers and were strongly influenced by the largest cohort. Similar risk estimates as for road traffic noise were found for railway noise, with no clear thresholds. For aircraft noise, results were uncertain due to the low number of exposed participants. Conclusion: Our results support an association between road traffic and railway noise and obesity.

5.
Alzheimers Dement ; 20(6): 4080-4091, 2024 06.
Article in English | MEDLINE | ID: mdl-38716818

ABSTRACT

INTRODUCTION: We examined the association of long-term exposure to air pollution and road traffic noise with dementia incidence in the Danish Nurse Cohort. METHODS: Female nurses were followed for dementia incidence (hospital contact or medication prescription) from 1993/1999 to 2020. Air pollution and road traffic noise levels were estimated at nurses' residences, and their associations with dementia were examined using Cox regression models. RESULTS: Of 25,233 nurses 1409 developed dementia. Particulate matter with a diameter of ≤2.5 µm (PM2.5) was associated with dementia incidence, after adjusting for lifestyle, socioeconomic status, and road traffic noise (hazard ratio [95% confidence interval] 1.35 [1.15-1.59] per interquartile range of 2.6 µg/m3). There was no association of PM2.5 with dementia in physically active nurses. Association with road traffic noise diminished after adjusting for PM2.5 (1.02 [0.93-1.11] per 7.6 dB). DISCUSSION: Long-term exposure to air pollution increases risk of dementia, and physical activity may moderate this risk. HIGHLIGHTS: Long-term exposure to air pollution was associated with increased risk of dementia among female nurses from the Danish Nurse Cohort. Association of air pollution with dementia was independent of road traffic noise. Association of road traffic noise with dementia diminished after adjusting for air pollution. Physical activity moderated adverse effects of air pollution on dementia.


Subject(s)
Air Pollution , Dementia , Environmental Exposure , Noise, Transportation , Nurses , Particulate Matter , Humans , Dementia/epidemiology , Female , Denmark/epidemiology , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Incidence , Nurses/statistics & numerical data , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Middle Aged , Cohort Studies , Noise, Transportation/adverse effects , Particulate Matter/adverse effects , Aged , Risk Factors , Adult
6.
J Prev Med Public Health ; 57(2): 185-196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576202

ABSTRACT

OBJECTIVES: Excess mortality associated with long-term exposure to fine particulate matter (PM2.5) has been documented. However, research on the disease burden following short-term exposure is scarce. We investigated the cause-specific mortality burden of short-term exposure to PM2.5 by considering the potential non-linear concentration-response relationship in Korea. METHODS: Daily cause-specific mortality rates and PM2.5 exposure levels from 2010 to 2019 were collected for 8 Korean cities and 9 provinces. A generalized additive mixed model was employed to estimate the non-linear relationship between PM2.5 exposure and cause-specific mortality levels. We assumed no detrimental health effects of PM2.5 concentrations below 15 µg/m3. Overall deaths attributable to short-term PM2.5 exposure were estimated by summing the daily numbers of excess deaths associated with ambient PM2.5 exposure. RESULTS: Of the 2 749 704 recorded deaths, 2 453 686 (89.2%) were non-accidental, 591 267 (21.5%) were cardiovascular, and 141 066 (5.1%) were respiratory in nature. A non-linear relationship was observed between all-cause mortality and exposure to PM2.5 at lag0, whereas linear associations were evident for cause-specific mortalities. Overall, 10 814 all-cause, 7855 non-accidental, 1642 cardiovascular, and 708 respiratory deaths were attributed to short-term exposure to PM2.5. The estimated number of all-cause excess deaths due to short-term PM2.5 exposure in 2019 was 1039 (95% confidence interval, 604 to 1472). CONCLUSIONS: Our findings indicate an association between short-term PM2.5 exposure and various mortality rates (all-cause, non-accidental, cardiovascular, and respiratory) in Korea over the period from 2010 to 2019. Consequently, action plans should be developed to reduce deaths attributable to short-term exposure to PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Republic of Korea/epidemiology , Mortality
7.
Acta Paediatr ; 113(7): 1602-1611, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506052

ABSTRACT

AIM: To evaluate changes in body mass index (BMI) in girls during and after treatment for idiopathic central precocious puberty (iCPP). METHODS: We studied 123 girls receiving gonadotropin-releasing hormone analogue (GnRHa)treatment for iCPP from 2009 to 2019. Pubertal and anthropometric measurements were monitored at routine clinical visits. BMI standard deviation scores (SDS) were estimated at baseline and followed in two stages from baseline to end of treatment (median 18.9 months) and from end of treatment to end of follow-up (median 18.2 months). The influence of baseline BMI SDS and the frequency and dose of treatment was evaluated using BMI trajectories and latent class mixed models. RESULTS: The median age at treatment initiation was 8.5 years. The median BMI SDS at baseline was 0.7, corresponding to a median BMI of 17.4 kg/m2. Overall, no changes in BMI SDS were observed during treatment. According to baseline BMI subgroups, an increasing trend in BMI trajectories during treatment was observed for girls in the lowest BMI group. After treatment, most girls maintained stable BMI levels. CONCLUSION: Our retrospective study did not provide evidence that GnRHa treatment for iCPP had a significant impact on BMI trajectories in girls.


Subject(s)
Body Mass Index , Gonadotropin-Releasing Hormone , Puberty, Precocious , Humans , Female , Puberty, Precocious/drug therapy , Child , Gonadotropin-Releasing Hormone/analogs & derivatives , Retrospective Studies
8.
Ann Am Thorac Soc ; 21(8): 1129-1138, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38513223

ABSTRACT

Rationale: Air pollution is a major risk factor for chronic cardiorespiratory diseases, affecting the immune and respiratory systems' functionality, but epidemiological evidence in respiratory infections remains sparse. Objectives: We aimed to assess the association of long-term exposure to ambient air pollution with the risk of developing new and recurrent acute lower respiratory infections (ALRIs), characterized by persistently severe symptoms necessitating hospital contact, and identify the potential susceptible populations by socioeconomic status, smoking, physical activity status, overweight, and comorbidity with chronic lung disease. Methods: We followed 23,912 female nurses from the Danish Nurse Cohort (age >44 yr) from baseline (1993 or 1999) until 2018 for incident and recurrent ALRIs defined by hospital contact (inpatient, outpatient, and emergency room) data from the National Patient Register. Residential annual mean concentrations of fine particulate matter, nitrogen dioxide (NO2), and black carbon were modeled using the Danish Eulerian Hemispheric Model/Urban Background Model/Air Geographic Information System. We used marginal Cox models with time-varying exposures to assess the association of 3-year running mean air pollution level with incident and recurrent ALRIs and examined effect modification by age, socioeconomic status, smoking, physical activity, body mass index, and comorbidity with asthma or chronic obstructive pulmonary disease (COPD). Results: During a 21.3-year mean follow-up, 4,746 ALRIs were observed, of which 2,553 were incident. We observed strong positive associations of all three pollutants with incident ALRIs, with hazard ratios and 95% confidence intervals of 1.19 (1.08-1.31) per 2.5 µg/m3 for fine particulate matter, 1.17 (1.11-1.24) per 8.0 µg/m3 for NO2, and 1.09 (1.05-1.12) per 0.3 µg/m3 for black carbon, and slightly stronger associations with recurrent ALRIs. Associations were strongest in patients with COPD and nurses with low physical activity. Conclusions: Long-term exposure to air pollution at low levels was associated with risks of new and recurrent ALRIs, with patients with COPD and physically inactive subjects most vulnerable.


Subject(s)
Air Pollution , Environmental Exposure , Respiratory Tract Infections , Humans , Denmark/epidemiology , Female , Air Pollution/adverse effects , Air Pollution/analysis , Middle Aged , Adult , Respiratory Tract Infections/epidemiology , Environmental Exposure/adverse effects , Risk Factors , Particulate Matter/adverse effects , Particulate Matter/analysis , Incidence , Nurses/statistics & numerical data , Air Pollutants/adverse effects , Air Pollutants/analysis , Cohort Studies , Aged , Acute Disease , Comorbidity , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Proportional Hazards Models
9.
Environ Int ; 185: 108500, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430583

ABSTRACT

Recent research suggests a link between air pollution and cognitive development in children, and studies on air pollution and academic achievement are emerging. We conducted a nationwide cohort study in Denmark to explore the associations between lifetime exposure to air pollution and academic performance in 9th grade. The study encompassed 785,312 children born in Denmark between 1989 and 2005, all of whom completed 9th-grade exit examinations. Using linear mixed models with a random intercept for each school, we assessed the relationship between 16 years of exposure to PM2.5, PM10, and gaseous pollutants and Grade Point Averages (GPA) in exit examinations, covering subjects such as Danish literature, Danish writing, English, mathematics, and natural sciences. The study revealed that a 5 µg/m3 increase in PM2.5 and PM10 was associated with a decrease of 0.99 (95 % Confidence Intervals: -1.05, -0.92) and 0.46 (-0.50, -0.41) in GPA, respectively. Notably, these negative associations were more pronounced in mathematics and natural sciences compared to language-related subjects. Additionally, girls and children with non-Danish mothers were found to be particularly susceptible to the adverse effects of air pollution exposure. These results underscore the potential long-term consequences of air pollution on academic achievement, emphasizing the significance of interventions that foster healthier environments for children's cognitive development.


Subject(s)
Academic Success , Air Pollutants , Air Pollution , Child , Female , Humans , Cohort Studies , Air Pollutants/analysis , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Particulate Matter/analysis , Denmark , Nitrogen Dioxide
10.
Environ Int ; 185: 108564, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467088

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is known as an obesogenic endocrine disruptor. Bisphenol S (BPS) and F (BPF) are substitutes that have recently replaced BPA. OBJECTIVES: To investigate the relationships of urinary bisphenols (BPA, BPS and BPF) with adiposity measurements (obesity, BMI z-score, and fat mass), serum adipokine levels (adiponectin and leptin), and adiponectin/leptin ratio (A/L ratio) in 6- and 8-year-old children. METHODS: A total of 561 children who participated in the Environment and Development of Children cohort (482 and 516 children visited at age 6 and 8, respectively) at Seoul National University Children's Hospital during 2015-2019 were included. Urinary BPA levels were log-transformed. BPS levels were categorized into three groups (non-detected, lower-half, and higher-half of detected), and BPF levels were classified into two groups (non-detected and detected). RESULTS: The urinary BPS higher-half group had a higher BMI z-score (ß = 0.160, P= 0.044), higher fat mass (ß = 0.104, P< 0.001), lower adiponectin concentration (ß =- 0.069, P< 0.001), higher leptin concentration (ß = 0.360, P< 0.001), and lower A/L ratio (ß =- 0.428, P< 0.001) compared with the non-detected group. The urinary BPF-detected group had a higher fat mass (ß = 0.074, P< 0.001), lower adiponectin concentration (ß =- 0.069, P< 0.001), higher leptin concentration (ß = 0.360, P< 0.001), and lower A/L ratio (ß =- 0.428, P< 0.001) compared with the non-detected group. The BPA levels showed no consistent associations with outcomes, except for isolated associations of BPA at age 6 with a higher BMI z-score at age 6 (P= 0.016) and leptin at age 8 (P= 0.021). CONCLUSIONS: Increased exposure to BPS and BPF is associated with higher fat mass and leptin concentration, lower serum adiponectin, and lower A/L ratio in children. These findings suggest potential adverse effects of BPA substitutes on adiposity and adipokines. No consistent association of BPA exposure with outcomes could be partly explained by the decreasing BPA levels over time.


Subject(s)
Adiponectin , Leptin , Phenols , Child , Humans , Benzhydryl Compounds/urine , Obesity , Adipokines
11.
Environ Pollut ; 346: 123664, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38431246

ABSTRACT

Ultrafine particles (UFPs) are airborne particles with a diameter of less than 100 nm. They are emitted from various sources, such as traffic, combustion, and industrial processes, and can have adverse effects on human health. Long-term mean ambient average particle size (APS) in the UFP range varies over space within cities, with locations near UFP sources having typically smaller APS. Spatial models for lung deposited surface area (LDSA) within urban areas are limited and currently there is no model for APS in any European city. We collected particle number concentration (PNC), LDSA, and APS data over one-year monitoring campaign from May 2021 to May 2022 across 27 locations and estimated annual mean in Copenhagen, Denmark, and obtained additionally annual mean PNC data from 6 state-owned continuous monitors. We developed 94 predictor variables, and machine learning models (random forest and bagged tree) were developed for PNC, LDSA, and APS. The annual mean PNC, LDSA, and APS were, respectively, 5523 pt/cm3, 12.0 µm2/cm3, and 46.1 nm. The final R2 values by random forest (RF) model were 0.93 for PNC, 0.88 for LDSA, and 0.85 for APS. The 10-fold, repeated 10-times cross-validation R2 values were 0.65, 0.67, and 0.60 for PNC, LDSA, and APS, respectively. The root mean square error for final RF models were 296 pt/cm3, 0.48 µm2/cm3, and 1.60 nm for PNC, LDSA, and APS, respectively. Traffic-related variables, such as length of major roads within buffers 100-150 m and distance to streets with various speed limits were amongst the highly-ranked predictors for our models. Overall, our ML models achieved high R2 values and low errors, providing insights into UFP exposure in a European city where average PNC is quite low. These hyperlocal predictions can be used to study health effects of UFPs in the Danish Capital.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Particle Size , Cities , Lung/chemistry , Environmental Monitoring , Air Pollution/analysis
12.
BMJ Open ; 14(2): e081351, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38423777

ABSTRACT

OBJECTIVES: To explore the associations of long-term exposure to air pollution with onset of all human health conditions. DESIGN: Prospective phenome-wide association study. SETTING: Denmark. PARTICIPANTS: All Danish residents aged ≥30 years on 1 January 2000 were included (N=3 323 612). After exclusion of individuals with missing geocoded residential addresses, 3 111 988 participants were available for the statistical analyses. MAIN OUTCOME MEASURE: First registered diagnosis of every health condition according to the International Classification of Diseases, 10th revision, from 2000 to 2017. RESULTS: Long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were both positively associated with the onset of more than 700 health conditions (ie, >80% of the registered health conditions) after correction for multiple testing, while the remaining associations were inverse or insignificant. As regards the most common health conditions, PM2.5 and NO2 were strongest positively associated with chronic obstructive pulmonary disease (PM2.5: HR 1.06 (95% CI 1.05 to 1.07) per 1 IQR increase in exposure level; NO2: 1.14 (95% CI 1.12 to 1.15)), type 2 diabetes (PM2.5: 1.06 (95% CI 1.05 to 1.06); NO2: 1.12 (95% CI 1.10 to 1.13)) and ischaemic heart disease (PM2.5: 1.05 (95% CI 1.04 to 1.05); NO2: 1.11 (95% CI 1.09 to 1.12)). Furthermore, PM2.5 and NO2 were both positively associated with so far unexplored, but highly prevalent outcomes relevant to public health, including senile cataract, hearing loss and urinary tract infection. CONCLUSIONS: The findings of this study suggest that air pollution has a more extensive impact on human health than previously known. However, as this study is the first of its kind to investigate the associations of long-term exposure to air pollution with onset of all human health conditions, further research is needed to replicate the study findings.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 2 , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Prospective Studies , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
13.
Environ Epidemiol ; 8(1): e293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343735

ABSTRACT

Background: Previous studies have indicated that renal disease mortality is sensitive to ambient temperatures. However, most have been limited to the summer season with inconclusive evidence for changes in population vulnerability over time. Objective: This study aims to examine the association between short-term exposure to ambient temperatures and mortality due to renal diseases in Japan, and how this association varied over time. Methods: We conducted a two-stage, time-stratified case-crossover study from 1979 to 2019 across 47 prefectures of Japan. We obtained the data of daily mortality counts for all renal diseases, acute renal failure, and chronic renal disease. We fitted a conditional quasi-Poisson regression model with a distributed lag nonlinear model. A random-effects meta-analysis was applied to calculate national averages. We performed additional analyses by four subperiods, sex, and age groups. Results: We analyzed 997,590 renal mortality cases and observed a reversed J-shaped association. Lower temperatures were associated with increased mortality in all renal disease categories. The cumulative relative risks at 2.5th percentile compared to the minimum mortality temperature percentile were 1.34 (95% confidence interval [CI] = 1.29, 1.40), 1.51 (95% CI = 1.33, 1.71), and 1.33 (95% CI = 1.24, 1.43) for all renal, acute renal failure, and chronic renal disease mortality, respectively. The associations were observed in individuals of both sexes and aged 65 years and above. The associations of kidney mortality with low temperature remained consistent, while the associations with high temperature were pronounced in the past, but not in recent periods. Conclusions: Protection for individuals with impaired renal function from exposure to low temperatures during cold seasons is warranted.

14.
BMJ Open ; 14(2): e076608, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228396

ABSTRACT

OBJECTIVE: Recent evidence supports that gynaecomastia may predict long-term morbidity, but evidence on the association with death and causes of death in males with gynaecomastia is lacking. The objective of this work is to estimate the risk of death in men diagnosed with gynaecomastia and evaluate whether this was conditional on underlying aetiologies of gynaecomastia. DESIGN: A nationwide register-based cohort study. SETTING: Nationwide Danish national health registries. PARTICIPANTS: Males were diagnosed with incident gynaecomastia (n=23 429) from 1 January 1995 to 30 June 2021, and each was age and calendar matched to five randomly population-based males without gynaecomastia (n=117 145). INTERVENTIONS: Not applicable. PRIMARY AND SECONDARY OUTCOMES: Gynaecomastia was distinguished between males without (idiopathic) and males with a known pre-existing risk factor. Cox regression models and Kaplan-Meier analyses estimated associations between gynaecomastia and death (all cause/cause specific). RESULTS: We identified a total of 16 253 males with idiopathic gynaecomastia and 7176 with gynaecomastia and a known pre-existing risk factor. Of these, 1093 (6.7%) and 1501 (20.9%) died during follow-up, respectively. We detected a 37% increased risk of all-cause death in males with gynaecomastia in the entire cohort (HR 1.37; 95% CI 1.31 to 1.43). Death risk was highest in males diagnosed with gynaecomastia and a known pre-existing risk factor (HR 1.75; 95% CI 1.64 to 1.86) compared with males with idiopathic gynaecomastia (HR 1.05; 95% CI 0.98 to 1.13). Specific causes of increased death were malignant neoplasms and circulatory, pulmonary and gastrointestinal diseases. Of the latter, an over fivefold risk of death from liver disease was detected (HR 5.05; 95% CI 3.97 to 6.42). CONCLUSIONS: Males diagnosed with gynaecomastia are at higher risk of death, observed mainly in males with a known pre-existing risk factor of gynaecomastia. These findings will hopefully stimulate more awareness among healthcare providers to potentially apply interventions that aid in alleviating underlying risk factors in males with this condition.


Subject(s)
Gynecomastia , Neoplasms , Humans , Male , Cohort Studies , Gynecomastia/epidemiology , Risk Factors , Proportional Hazards Models , Registries , Denmark/epidemiology
15.
Int J Cancer ; 154(1): 71-80, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37603038

ABSTRACT

Maternal smoking in pregnancy may increase the risk of testicular germ cell cancer (TGCC) in offspring, but current evidence remains inconclusive. We performed a nested case-control study using cotinine measurements in maternal serum and amniotic fluid as a biomarker for tobacco exposure during pregnancy. A total of 654 males with maternal serum (n = 359, ncases/controls = 71/288) and/or amniotic fluid (n = 295, ncases/controls = 66/229) samples were included. Data on TGCC diagnoses and relevant covariates were derived from nationwide Danish health registries. Cotinine was quantified by liquid chromatography tandem mass spectrometry. An adapted cox regression model estimated the risk of TGCC considering active and inactive tobacco use defined according to cotinine concentrations of <, ≥15 ng/ml. Overall, the concentrations of cotinine were comparable in maternal serum and amniotic fluid (medianserum/amniotic fluid : 2.1/2.6 ng/ml). A strong statistically significant correlation was detected in 14 paired samples (Spearman rho: 0.85). Based on maternal serum cotinine concentrations, exposure to active tobacco use was not associated with risk of TGCC in offspring (HR 0.88, 95% CI 0.51; 1.52). Similarly, based on amniotic fluid cotinine concentrations, exposure to active tobacco use was not associated with risk of TGCC (HR 1.11, 95% CI 0.64; 1.95). However, different risks were observed for seminomas and nonseminomas in both matrices, but none were statistically significant. Our findings did not provide convincing evidence supporting that exposure to tobacco during pregnancy is associated with TGCC.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Tobacco Smoke Pollution , Pregnancy , Male , Female , Humans , Cotinine/analysis , Amniotic Fluid/chemistry , Prospective Studies , Case-Control Studies , Neoplasms, Germ Cell and Embryonal/epidemiology , Neoplasms, Germ Cell and Embryonal/etiology , Tobacco Smoke Pollution/adverse effects , Maternal Exposure/adverse effects
16.
Environ Health Perspect ; 131(12): 127003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039140

ABSTRACT

BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.


Subject(s)
Air Pollutants , Air Pollution , Humans , Aged , Air Pollutants/analysis , Environmental Exposure/analysis , National Health Programs , Air Pollution/analysis , Particulate Matter/analysis , Europe/epidemiology , Cohort Studies , Canada/epidemiology
17.
Eur Thyroid J ; 12(6)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37992286

ABSTRACT

Objective: Adequate iodine intake is essential for growing children, and thyroid volume (Tvol) is considered as an indicator of iodine status. We investigated Tvol and goiter using ultrasonography (US) and their association with iodine status in 228 6-year-old children living in Korea. Methods: Iodine status was assessed using urine iodine concentration (UIC) and categorized as deficient (<100 µg/L), adequate (100-299 µg/L), mild excess (300-499 µg/L), moderate excess (500-999 µg/L), and severe excess (≥1000 µg/L). Tvol was measured using US, and a goiter on the US (goiter-US) was defined as Tvol greater than 97th percentile value by age- and body surface area (BSA)-specific international references. Results: The median Tvol was 2.4 mL, larger than the international reference value (1.6 mL). The age- and BSA-specific goiter-US rates were 25.9% (n = 59) and 34.6% (n = 79), respectively. The prevalence of excess iodine was 73.7% (n = 168). As iodine status increased from adequate to severe excess, the goiter-US rate significantly increased (P for trend <0.05). The moderate and severe iodine excess groups showed higher risk of goiter-US (adjusted odds ratio (aOR) = 3.1 (95% CI: 1.1-9.2) and aOR = 3.1 (95% CI: 1.2-8.3), respectively; age-specific criteria) than the iodine-adequate group. Conclusions: Excess iodine was prevalent in Korean children, and their Tvol was higher than the international reference values. Goiter rate was associated with iodine excess, which significantly increased in the moderate and severe iodine excess groups. Further studies are warranted to define optimal iodine intake in children.


Subject(s)
Goiter , Iodine , Child , Humans , Goiter/diagnostic imaging , Nutritional Status , Ultrasonography
18.
Environ Pollut ; 336: 122396, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37595732

ABSTRACT

Ultrafine particles (UFP; particulate matter <0.1 µm in diameter) may be more harmful to human health than larger particles, but epidemiological evidence on their health effects is still limited. In this study, we examined the association between short-term exposure to UFP and mortality and hospital admissions in Copenhagen, Denmark. Daily concentrations of UFP (measured as particle number concentration in a size range 11-700 nm) and meteorological variables were monitored at an urban background station in central Copenhagen during 2002-2018. Daily counts of deaths from all non-accidental causes, as well as deaths and hospital admissions from cardiovascular and respiratory diseases were obtained from Danish registers. Mortality and hospital admissions associated with an interquartile range (IQR) increase in UFP exposure on a concurrent day and up to six preceding days prior to the death or admission were examined in a case-crossover study design. Odds ratios (OR) with 95% confidence intervals (CI) per one IQR increase in UFP were estimated after adjusting for temperature and relative humidity. We observed 140,079 deaths in total, 236,003 respiratory and 342,074 cardiovascular hospital admissions between 2002 and 2018. Hospital admissions due to respiratory and cardiovascular diseases were significantly positively associated with one IQR increase in UFP (OR: 1.04 [95% CI: 1.01, 1.07], lag 0-4, and 1.02 [1.00, 1.04], lag 0-1, respectively). Among the specific causes, the strongest associations were found for chronic obstructive pulmonary disease (COPD) mortality and asthma hospital admissions and two-day means (lag 0-1) of UFP (OR: 1.13 [1.01, 1.26] and 1.08 [1.00, 1.16], respectively, per one IQR increase in UFP). Based on 17 years of UFP monitoring data, we present novel findings showing that short-term exposure to UFP can trigger respiratory and cardiovascular diseases mortality and morbidity in Copenhagen, Denmark. The strongest associations with UFP were observed with COPD mortality and asthma hospital admissions.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , Humans , Particulate Matter/analysis , Cardiovascular Diseases/epidemiology , Cross-Over Studies , Asthma/epidemiology , Denmark/epidemiology , Hospitals , Air Pollutants/analysis , Particle Size
19.
JBMR Plus ; 7(7): e10750, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457875

ABSTRACT

Fragility fractures, resulting from low-energy trauma, occur in approximately 1 in 10 Danish women aged 50 years or older. Bilateral oophorectomy (surgical removal of both ovaries) may increase the risk of fragility fractures due to loss of ovarian sex steroids, particularly estrogen. We investigated the association between bilateral oophorectomy and risk of fragility fracture and whether this was conditional on age at time of bilateral oophorectomy, hormone therapy (HT) use, hysterectomy, physical activity level, body mass index (BMI), or smoking. We performed a cohort study of 25,853 female nurses (≥45 years) participating in the Danish Nurse Cohort. Nurses were followed from age 50 years or entry into the cohort, whichever came last, until date of first fragility fracture, death, emigration, or end of follow-up on December 31, 2018, whichever came first. Cox regression models with age as the underlying time scale were used to estimate the association between time-varying bilateral oophorectomy (all ages, <51/≥51 years) and incident fragility fracture (any and site-specific [forearm, hip, spine, and other]). Exposure and outcome were ascertained from nationwide patient registries. During 491,626 person-years of follow-up, 6600 nurses (25.5%) with incident fragility fractures were identified, and 1938 (7.5%) nurses had a bilateral oophorectomy. The frequency of fragility fractures was 24.1% in nurses who were <51 years at time of bilateral oophorectomy and 18.1% in nurses who were ≥51 years. No statistically significant associations were observed between bilateral oophorectomy at any age and fragility fractures at any site. Neither HT use, hysterectomy, physical activity level, BMI, nor smoking altered the results. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

20.
Environ Int ; 178: 108108, 2023 08.
Article in English | MEDLINE | ID: mdl-37490787

ABSTRACT

BACKGROUND: Environmental noise is an important environmental exposure that can affect health. An association between transportation noise and breast cancer incidence has been suggested, although current evidence is limited. We investigated the pooled association between long-term exposure to transportation noise and breast cancer incidence. METHODS: Pooled data from eight Nordic cohorts provided a study population of 111,492 women. Road, railway, and aircraft noise were modelled at residential addresses. Breast cancer incidence (all, estrogen receptor (ER) positive, and ER negative) was derived from cancer registries. Hazard ratios (HR) were estimated using Cox Proportional Hazards Models, adjusting main models for sociodemographic and lifestyle variables together with long-term exposure to air pollution. RESULTS: A total of 93,859 women were included in the analyses, of whom 5,875 developed breast cancer. The median (5th-95th percentile) 5-year residential road traffic noise was 54.8 (40.0-67.8) dB Lden, and among those exposed, the median railway noise was 51.0 (41.2-65.8) dB Lden. We observed a pooled HR for breast cancer (95 % confidence interval (CI)) of 1.03 (0.99-1.06) per 10 dB increase in 5-year mean exposure to road traffic noise, and 1.03 (95 % CI: 0.96-1.11) for railway noise, after adjustment for lifestyle and sociodemographic covariates. HRs remained unchanged in analyses with further adjustment for PM2.5 and attenuated when adjusted for NO2 (HRs from 1.02 to 1.01), in analyses using the same sample. For aircraft noise, no association was observed. The associations did not vary by ER status for any noise source. In analyses using <60 dB as a cutoff, we found HRs of 1.08 (0.99-1.18) for road traffic and 1.19 (0.95-1.49) for railway noise. CONCLUSIONS: We found weak associations between road and railway noise and breast cancer risk. More high-quality prospective studies are needed, particularly among those exposed to railway and aircraft noise before conclusions regarding noise as a risk factor for breast cancer can be made.


Subject(s)
Breast Neoplasms , Noise, Transportation , Humans , Female , Noise, Transportation/adverse effects , Cohort Studies , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Risk Factors , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL