Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 433(18): 167118, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34174328

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral Mpro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of Mpro is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 Mpro. For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the Mpro bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.


Subject(s)
Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Catalytic Domain/physiology , Crystallography, X-Ray/methods , Dimerization , Humans
2.
J Leukoc Biol ; 74(5): 857-67, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14595006

ABSTRACT

Production of IL-12 is an important indicator of the macrophage's ability to regulate immune responses. In this study, we investigated the IL-12 production by macrophages in different developmental stages. To this end, macrophages were generated in vitro from precursors stimulated with M-CSF, GM-CSF or IL-3. Density separation yielded populations enriched in different maturation stages. Invariably, only cells banding at the 40-50% Percoll interface produced large amounts of IL-12p40 when stimulated with LPS, whereas only low levels of IL-12p70 were produced. These cells represented immature macrophages, as indicated by the absence of precursor markers CD31/ER-MP12, Ly-6C/ER-MP20 and ER-MP58, and by the low level of expression of mature-cell markers like ER-HR3, scavenger receptor and CD11b/Mac-1. Upon further maturation, the macrophages' ability to produce IL-12p40 decreased, coinciding with increased nitric oxide production upon LPS stimulation. These results show that immature macrophages produce high levels of IL-12p40 and thus may either contribute to IL-12p70 production or regulate it.


Subject(s)
Bone Marrow Cells/cytology , Interleukin-12/biosynthesis , Macrophages/cytology , Macrophages/immunology , Protein Subunits/biosynthesis , Animals , Cell Differentiation/drug effects , Cell Separation/methods , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-12 Subunit p40 , Interleukin-3/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Mice , Monocytes/cytology , Monocytes/drug effects , Monocytes/immunology , Nitric Oxide/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...