Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 88: 106919, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32871475

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is one of the main animal models used for the study of Multiple Sclerosis (MS). Long-chain lipophilic amino alcohols with immunoregulatory activities have already been studied in some models of inflammatory diseases, but the action of these compounds in EAE and MS is still unknown. In this study, we investigated whether the lipophilic amino alcohol 4b would act to improve the clinical signs of EAE and reduce the demyelination process and the neuroinflammatory parameters in the spinal cord, as well as the inflammatory process in the inguinal lymph nodes, of C57Bl/6 mice induced with EAE after stimulation with MOG35-55 and pertussis toxin. The 4b treatment (1.0 mg/kg/day) was orally administered, starting on the day of onset of clinical signs of the disease (10th) and ending on the 20th day after immunization. This treatment was able to reduce the cell count on the inguinal lymph nodes, the migration of inflammatory cells into the central nervous system (CNS), as well as the processes of microgliosis, astrogliosis, and the production of chemokines and pro-inflammatory cytokines, thus increasing the IL-10 anti-inflammatory cytokine levels in EAE mice. The inhibition of Akt phosphorylation in the CNS of EAE mice after treatment with 4b indicates that the immunoregulatory action of 4b is related to the PI3K/Akt signaling pathway. Our results indicate the immunoregulatory efficacy of the new compound 4b in the control of some inflammatory parameters and in the glial proliferation. In addition, 4b was able to reduce the demyelination of neurons and the worsening of clinical signs of EAE as effectively as the compound FTY720, the first oral drug approved by the FDA for the treatment of MS.


Subject(s)
Amino Alcohols/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunologic Factors/therapeutic use , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Amino Alcohols/pharmacology , Animals , Cytokines/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Immunologic Factors/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice, Inbred C57BL , Signal Transduction/drug effects , Spinal Cord/drug effects , Spinal Cord/immunology
2.
Neuropharmacology ; 176: 108156, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32574650

ABSTRACT

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt)/mechanistic target of rapamycin (mTOR) signaling pathway has been associated with several pathologies in the central nervous system (CNS), including epilepsy. There is evidence supporting the hypothesis that the PI3Kγ signaling pathway may mediate the powerful anticonvulsant properties associated with the cannabinoidergic system. This work aims to investigate if the anticonvulsant and neuroprotective effects of cannabidiol (CBD) are mediated by PI3Kγ. In vitro and in vivo experiments were performed on C57Bl/6 wild-type (WT) and PI3Kγ-/- mice. Behavioral seizures were induced by bilateral intra-hippocampal pilocarpine microinjection. Twenty-four hours after the first behavioral seizure, animals were perfused and their brains removed and processed, for histological analysis of neurodegeneration, microgliosis and astrocytosis. Primary cultures of hippocampal neurons were used for glutamate-induced cell death assay. CDB increased latency and reduced the severity of pilocarpine-induced behavioral seizures, as well as prevented postictal changes, such as neurodegeneration, microgliosis and astrocytosis, in WT animals, but not in PI3Kγ-/-. CBD in vivo effects were abolished by pharmacological inhibition of cannabinoid receptor or mTOR. In vitro, PI3Kγ inhibition or deficiency also changed CBD protection observed in glutamate-induced cell death assay. Thus, we suggest that the modulation of PI3K/mTOR signaling pathway is involved in the anticonvulsant and neuroprotective effects of CBD. These findings are important not only for the elucidation of the mechanisms of action of CBD, which are currently poorly understood, but also to allow the prediction of therapeutic and side effects, ensuring efficacy and safety in the treatment of patients with epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Cannabidiol/pharmacology , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Seizures/metabolism , Seizures/prevention & control , Animals , Anticonvulsants/therapeutic use , Cannabidiol/therapeutic use , Cells, Cultured , Class Ib Phosphatidylinositol 3-Kinase/deficiency , Class Ib Phosphatidylinositol 3-Kinase/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pilocarpine/toxicity , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Seizures/chemically induced , Treatment Outcome
3.
Neuropharmacology ; 160: 107785, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31541651

ABSTRACT

Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-ß (Aß) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aß induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aß injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aß accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aß stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Benzamides/pharmacology , Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Receptor, Metabotropic Glutamate 5/drug effects , Allosteric Regulation , Amyloid beta-Peptides/adverse effects , Animals , Benzamides/administration & dosage , Disease Models, Animal , Hippocampus/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Peptide Fragments/adverse effects , Pyrazoles/administration & dosage , Receptor, Metabotropic Glutamate 5/metabolism
4.
Behav Brain Res ; 329: 166-171, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28408298

ABSTRACT

RATIONALE: Few studies suggest that antidepressants exert their effects by activating some signaling pathways, including the phosphatidylinositol 3-kinase (PI3K). Moreover, valproic acid (VPA) activates the PI3K pathway. Thus, here we investigated the antidepressant-like effect of VPA and if its effect is related to PI3K/Akt/mTOR activation. METHODS: C57Bl/6 (WT) and PI3Kγ-/- mice received VPA injections (30, 100 or 300mg/kg, i.p.) and 30min after they were submitted to the forced swimming (FS), tail suspension (TS) and open field (OF) tests. Another group was pretreated with rapamycin (5mg/kg, i.p.) 150min before VPA administration. Akt phosphorylation levels were measured by Western blotting. RESULTS: In WT mice, VPA (30mg/kg) reduced the immobility time in both FS and TS tests. However, VPA (300mg/kg) increased the immobility time in FS test. All doses of VPA did not alter locomotor activity. In PI3Kγ-/- mice, none of the doses revealed antidepressant-like effect. However, in the OF test, the lower dose of VPA increased the travelled distance in comparison with vehicle group. An increase in Akt phosphorylation levels was observed in WT, but not in PI3Kγ-/- mice. Finally, the pretreatment of WT mice with rapamycin abolished the antidepressant-like effect of VPA (30mg/kg) in FS test. CONCLUSION: These data suggest that the antidepressant-like effects of VPA might depend on PI3K and mTOR activation. Thus, more studies are necessary to investigate the mechanisms involved in the antidepressant-like effect induced by VPA in order to investigate novel therapeutic targets for the treatment of depression.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Phosphatidylinositol 3-Kinase/deficiency , Signal Transduction/drug effects , Valproic Acid/therapeutic use , Animals , Depression/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Hindlimb Suspension , Immobility Response, Tonic/drug effects , Locomotion/drug effects , Locomotion/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinase/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Epilepsy Behav ; 64(Pt A): 83-89, 2016 11.
Article in English | MEDLINE | ID: mdl-27736661

ABSTRACT

Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. The pilocarpine (PILO) experimental model of TLE portrays behavioral and pathophysiological changes in rodents that are very similar to those found in humans with TLE. However, this model is associated with an unfortunate high mortality rate. Studies have shown that intrahippocampal injection of PILO, while having a much smaller mortality rate, induces status epilepticus (SE) that secondarily leads to TLE. To the best of our knowledge, the present study was the first to evaluate the cognitive and histological alterations 72h after intrahippocampal microinjection of PILO in C57BL/6 mice. Seventy percent of mice developed status epilepticus (SE) after PILO administration, and all animals survived after SE. Seventy-two hours after SE, mice presented memory impairment in both Novel Object Recognition (recognition index - vehicle: 67.57±4.46% vs PILO: 52.33±3.29%) and Contextual Fear Conditioning (freezing time - vehicle: 203±20.43 vs PILO: 107.80±25.17s) tasks. Moreover, using Nissl and NeuN staining, we observed in PILO-treated mice a significant decrease in cell viability and an increase in neuronal loss in all three hippocampal regions analyzed, cornus ammonis (CA) 1, CA3, and dentate gyrus (DG), in comparison with the control group. Additionally, using Iba-1 staining, we observed in PILO-treated mice a significant increase in microglial proliferation in CA1, CA3, and DG of the hippocampus. Therefore, intrahippocampal PILO microinjection is an efficient route to induce SE and acute postictal epileptogenic-like alterations in C57BL/6 mice.


Subject(s)
Cell Death/drug effects , Epilepsy, Temporal Lobe/chemically induced , Gliosis/chemically induced , Hippocampus/drug effects , Memory Disorders/chemically induced , Muscarinic Agonists/pharmacology , Neurons/drug effects , Pilocarpine/pharmacology , Status Epilepticus/chemically induced , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Muscarinic Agonists/administration & dosage , Pilocarpine/administration & dosage
6.
Sci Rep ; 6: 25226, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27142962

ABSTRACT

Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the main cause of dementia. Substantial evidences indicate that there is over-activation of the PI3K/Akt/mTOR axis in AD. Therefore, the aim of the present study was to investigate the effects of NVP-BEZ235 (BEZ; dactolisib), a dual PI3K/mTOR inhibitor that is under phase I/II clinical trials for the treatment of some types of cancer, in hippocampal neuronal cultures stimulated with amyloid-ß (Aß) 1-42 and in mice injected with Aß 1-42 in the hippocampus. In cell cultures, BEZ reduced neuronal death induced by Aß. BEZ, but not rapamycin, a mTOR inhibitor, or LY294002, a PI3K inhibitor that also inhibits mTOR, reduced the memory impairment induced by Aß. The effect induced by Aß was also prevented in PI3Kγ(-/-) mice. Neuronal death and microgliosis induced by Aß were reduced by BEZ. In addition, the compound increased IL-10 and TNF-α levels in the hippocampus. Finally, BEZ did not change the phosphorylation of Akt and p70s6K, suggesting that the involvement of PI3K and mTOR in the effects induced by BEZ remains controversial. Therefore, BEZ represents a potential strategy to prevent the pathological outcomes induced by Aß and should be investigated in other models of neurodegenerative conditions.


Subject(s)
Amyloid beta-Peptides/toxicity , Hippocampus/drug effects , Hippocampus/pathology , Imidazoles/administration & dosage , Memory Disorders/prevention & control , Neuroprotective Agents/administration & dosage , Quinolines/administration & dosage , Animals , Cell Survival/drug effects , Cells, Cultured , Imidazoles/pharmacology , Mice , Neurons/drug effects , Neurons/physiology , Neuroprotective Agents/pharmacology , Quinolines/pharmacology
7.
Exp Neurol ; 267: 123-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25749189

ABSTRACT

Phosphatidylinositol 3-kinase (PI3K) is an enzyme involved in different pathophysiological processes, including neurological disorders. However, its role in seizures and postictal outcomes is still not fully understood. We investigated the role of PI3Kγ on seizures, production of neurotrophic and inflammatory mediators, expression of a marker for microglia, neuronal death and hippocampal neurogenesis in mice (WT and PI3Kγ(-/-)) subjected to intrahippocampal microinjection of pilocarpine. PI3Kγ(-/-) mice presented a more severe status epilepticus (SE) than WT mice. In hippocampal synaptosomes, genetic or pharmacological blockade of PI3Kγ enhanced the release of glutamate and the cytosolic calcium concentration induced by KCl. There was an enhanced neuronal death and a decrease in the doublecortin positive cells in the dentate gyrus of PI3Kγ(-/-) animals after the induction of SE. Levels of BDNF were significantly increased in the hippocampus of WT and PI3Kγ(-/-) mice, although in the prefrontal cortex, only PI3Kγ(-/-) animals showed significant increase in the levels of this neurotrophic factor. Pilocarpine increased hippocampal microglial immunolabeling in both groups, albeit in the prelimbic, medial and motor regions of the prefrontal cortex this increase was observed only in PI3Kγ(-/-) mice. Regarding the levels of inflammatory mediators, pilocarpine injection increased interleukin (IL) 6 in the hippocampus of WT and PI3Kγ(-/-) animals and in the prefrontal cortex of PI3Kγ(-/-) animals 24h after the stimulus. Levels of TNFα were enhanced in the hippocampus and prefrontal cortex of only PI3Kγ(-/-) mice at this time point. On the other hand, PI3Kγ deletion impaired the increase in IL-10 in the hippocampus induced by pilocarpine. In conclusion, the lack of PI3Kγ revealed a deleterious effect in an animal model of convulsions induced by pilocarpine, suggesting that this enzyme may play a protective role in seizures and pathological outcomes associated with this condition.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/deficiency , Hippocampus/drug effects , Muscarinic Agonists/toxicity , Pilocarpine/toxicity , Seizures/chemically induced , Seizures/genetics , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Class Ib Phosphatidylinositol 3-Kinase/genetics , Cytokines/metabolism , Disease Models, Animal , Doublecortin Domain Proteins , Enzyme Inhibitors/therapeutic use , Glutamic Acid/metabolism , Hippocampus/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Quinoxalines/therapeutic use , Reaction Time/drug effects , Reaction Time/genetics , Seizures/drug therapy , Synaptosomes/metabolism , Synaptosomes/pathology , Thiazolidinediones/therapeutic use , Time Factors
8.
Neuropharmacology ; 89: 274-81, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25312280

ABSTRACT

Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.


Subject(s)
Excitatory Amino Acid Agonists/toxicity , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , N-Methylaspartate/toxicity , Neurotoxicity Syndromes , Sarcosine/analogs & derivatives , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Fluoresceins , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation/drug effects , Glutamic Acid/metabolism , Glycine/metabolism , Hippocampus/drug effects , Hippocampus/injuries , Male , Mice , Mice, Inbred C57BL , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/prevention & control , Sarcosine/administration & dosage , Time Factors , Tritium/metabolism
9.
Phytother Res ; 27(6): 926-30, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22933394

ABSTRACT

Cecropia pachystachya is widely used in the traditional medicine as anti-inflammatory, antitusive, expectorant, antiasthmatic and hypoglycemic. It is also commercially available to treat skin cancer. To validate some of the popular uses of this species, its methanol leaves extract (CPM) was tested for anti-inflammatory, antinociceptive and cytotoxic effects. The anti-inflammatory activity was evaluated by croton oil-induced ear edema test. When used orally, the anti-inflammatory effect of CPM at 300 mg/kg was similar to that of indomethacin with 53% inhibition of the ear edema. Also, results on topical treatment were similar to that of dexamethasone with 83% inhibition of the edema. To evaluate the antinociceptive activity, acetic acid-induced writhing and formalin-induced pain tests were employed. CPM (100 and 300 mg/kg) reduced the number of writhing by 61% and 67%, respectively. In both doses, the activity was comparable to the reference drug, indomethacin. The oral administration of CPM was ineffective in the first phase of formalin test but exhibited great effects on the second phase decreasing the licking time by 85% at 300 mg/kg. The cytotoxic potential of CPM was also investigated against HL60, HL60.bcl2 and Jurkat tumor cell lines and showed an inhibition of more than 50% of cell proliferation. The flavones orientin and isoorientin were detected in CPM.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Cecropia Plant/chemistry , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Edema/drug therapy , HL-60 Cells , Humans , Jurkat Cells , Male , Mice , Pain/drug therapy , Pain Measurement
10.
Mediators Inflamm ; 2012: 946813, 2012.
Article in English | MEDLINE | ID: mdl-22778499

ABSTRACT

Increasing data demonstrates that inflammation participates in the pathophysiology of neurodegenerative diseases. Among the different inflammatory mediators involved, prostaglandins play an important role. The effects induced by prostaglandins might be mediated by activation of their known receptors or by nonclassical mechanisms. In the present paper, we discuss the evidences that link prostaglandins, as well as the enzymes that produce them, to some neurological diseases.


Subject(s)
Inflammation/metabolism , Neurodegenerative Diseases/metabolism , Prostaglandins/metabolism , Animals , Central Nervous System/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL