Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1235234, 2023.
Article in English | MEDLINE | ID: mdl-37794932

ABSTRACT

Information on tolerance to isolated or combined abiotic stresses is still scarce for tree species, although such stresses are normal in nature. The interactive effect of light availability and water stress has been reported for some native tree species in Brazil but has not been widely investigated. To test the hypothesis that shading can mitigate the stressful effect of water deficit on the photosynthetic and antioxidant metabolism and on the growth of young Hymenaea courbaril L. plants, we evaluated the following two water regimes: a) continuous irrigation - control (I) - 75% field capacity. and b) water deficit (S), characterized by irrigation suspension associated the two following periods of evaluation: P0 - when the photosynthetic rate of plants subjected to irrigation suspension reached values ​​close to zero, with the seedlings being re-irrigated at that moment, and REC - when the photosynthetic rate of the re-irrigated plants of each shading levels reached values ​​similar to those of plants in the control treatment, totaling four treatments: IP0, SP0, IREC, and SREC. The plants of these four treatments were cultivated under the four following shading levels: 0, 30, 50, and 70%, constituting 16 treatments. Intermediate shading of 30 and 50% mitigates the water deficit and accelerates the recovery of H. courbaril. Water deficit associated with cultivation without shading (0%) should not be adopted in the cultivation or transplantation of H. courbaril. After the resumption of irrigation in the REC, the other characteristics presented a recovery under all cultivation conditions. Key message: Intermediate shading of 30 and 50% mitigates the water deficit and accelerates the recovery of H. courbaril.

2.
Eur J Med Chem ; 45(9): 3685-91, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20541294

ABSTRACT

In this work we reported the synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities in vitro of three new compound series obtained from ethyl(5-methyl-1-H-imidazole-4-carboxylate): acylthiosemicarbazide analogues 3a-d, 4-thiazolidinone analogues 4a-d and 1,3,4-thiadiazole analogues 5a-d. All synthesized compounds were characterized by IR, (1)H, (13)C NMR and HRMS. The majority of the tested compounds show excellent anti-T. gondii activity when compared to hydroxyurea and sulfadiazine. In addition it was also shown that most of the compounds in this study have a better performance against intracellular tachyzoites. The results for antimicrobial activity evaluation showed weak antibacterial and antifungal activities for all the tested molecules, when compared with the standard drugs (chloramphenicol and rifampicin for antibacterial activity; nistatin and ketoconazole for antifungal activity).


Subject(s)
Semicarbazides/chemical synthesis , Semicarbazides/pharmacology , Thiazolidines/chemical synthesis , Thiazolidines/pharmacology , Toxoplasma/drug effects , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Bacteria/drug effects , Chlorocebus aethiops , Drug Resistance , Fungi/drug effects , Intracellular Space/drug effects , Intracellular Space/parasitology , Microbial Sensitivity Tests , Semicarbazides/chemistry , Thiazolidines/chemistry , Toxoplasma/physiology , Vero Cells
3.
Arch Pharm (Weinheim) ; 341(10): 655-60, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18720338

ABSTRACT

The N-alkylated derivatives from nitrofurazone were synthesised and evaluated in vitro for their efficacy as antimicrobial agents against representative strains, including methicillin-resistant Staphylococcus aureus (MRSA). The derivative 2a demonstrated greater activity than the prototype and was comparable to currently used antimicrobial drugs.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Drug Design , Nitrofurazone , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Nitrofurazone/chemical synthesis , Nitrofurazone/chemistry , Nitrofurazone/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem ; 16(1): 446-56, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17905587

ABSTRACT

In the present communication, a new series of 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids (2a-p) have been synthesized. Benzaldehyde 4-phenyl-3-thiosemicarbazones substituted (1a-p) were also obtained and used as intermediate to give the title compounds. All synthesized compounds were characterized by IR, (1)H and (13)C NMR. The in vitro anti-Toxoplasma gondii activity of 1a-p and 2a-p was evaluated. The 4-thiazolidinones (2a-p) were screened for their in vitro antimicrobial activity. For anti-Toxoplasma gondii activity, in general, all compounds promoted decreases in the percentage of infected cells leading to parasite elimination. These effects on intracellular parasites also caused a decrease in the mean number of tachyzoites. In addition, most of the 4-thiazolidinones showed more effective toxicity against intracellular parasites, with IC(50) values ranging from 0.05 to 1 mM. According to results of antimicrobial activity, compounds 2f, 2l, and 2p showed best activity against Mycobacterium luteus, 2c was more active against Mycobacterium tuberculosis, and 2g, 2l, and 2n showed same activity as nistatin (standard drug) against Candida sp. (4249).


Subject(s)
Anti-Infective Agents/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Thiazolidines/chemical synthesis , Thiosemicarbazones/chemical synthesis , Toxoplasma/drug effects , Animals , Anti-Infective Agents/pharmacology , Antiprotozoal Agents/pharmacology , Candida/drug effects , Humans , Inhibitory Concentration 50 , Mycobacterium/drug effects , Mycobacterium tuberculosis/drug effects , Spectrum Analysis , Thiazolidines/pharmacology , Thiosemicarbazones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...