Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794549

ABSTRACT

This study investigates the unique morphology and mechanical properties of multi-jet electrospun cashew gum (CG) when combined with high-molecular-weight polyethylene oxide (PEO) and glycerol. Cashew gum (CG) is a low-cost, non-toxic heteropolysaccharide derived from Anacardium occidentale trees. Initially, the electrospinnability of aqueous solutions of cashew gum alone or in combination with PEO was evaluated. It was found that cashew gum alone was not suitable for electrospinning; thus, adding a small quantity of PEO was needed to create the necessary molecular entanglements for fiber formation. By using a single emitter with a CG:PEO ratio of 85:15, straight and smooth fibers with some defects were obtained. However, additional purification of the cashew gum solution was needed to produce more stable and defect-free straight and smooth fibers. Additionally, the inclusion of glycerol as a plasticizer was required to overcome material fragility. Interestingly, when the optimized formulation was electrospun using multiple simultaneous emitters, thicker aligned fiber bundles were achieved. Furthermore, the resulting oriented fiber mats exhibited unexpectedly high elongation at break under ambient conditions. These findings underscore the potential of this bio-polysaccharide-based formulation for non-direct water contact applications that demand elastic properties.

2.
Food Funct ; 15(3): 1527-1538, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38231081

ABSTRACT

Foods rich in riboflavin (Rf) are susceptible to degradation due to oxidative processes with the formation of radicals. Herein, we describe the features and stability of an Mg(II) complex containing ferulic acid (fer) and 1,10-phenanthroline (phen) as chelators: henceforth called Mg(phen)(fer). The electrochemical behavior of Mg(phen)(fer) is pH dependent and results from the stabilisation of the corresponding phenoxyl radical via complexation with Mg(II). This stabilisation enhances the antioxidant activity of Mg(phen)(fer) with respect to free fer and commercial antioxidants. Mg(phen)(fer) scavenges and neutralizes DPPH˙ (IC50 = 15.6 µmol L-1), ABTS˙+ (IC50 = 5.65 µmol L-1), peroxyl radical (IC50 = 5.64 µg L-1) and 1O2 (IC50 = 0.7 µg m-1). Mg(phen)(fer) effectively protects riboflavin (Rf) against photodegradation by quenching the singlet excited states of Rf regardless of the conditions. Also, the complex Mg(phen)(fer) was effectively incorporated into starch films, broadening its applications, as shown by microbiological studies. Thus, Mg(phen)(fer) has high potential for use in Rf-rich foods and to become a new alternative to the synthetic antioxidants currently used.


Subject(s)
Antioxidants , Chelating Agents , Antioxidants/pharmacology , Antioxidants/chemistry , Riboflavin/chemistry , Coumaric Acids
3.
Food Res Int ; 172: 113102, 2023 10.
Article in English | MEDLINE | ID: mdl-37689872

ABSTRACT

The microbial population of raw milk plays a crucial role in the development of distinctive traits of raw-milk cheeses particularly appreciated by consumers. It was previously demonstrated that the microbial population of raw milk is modified by a high-speed centrifugation (also called bactofugation) conducted at 39 °C. The aim of the present study was to evaluate the effects of this process, performed once or twice, on the microbial, compositional, biochemical, and sensory characteristics of the derived hard cheeses. Experimental and control cheesemaking were conducted in parallel at a cheese factory during a 13-month period. Cheeses were analysed after 9, 15 and 20 months of ripening for microbial count, composition, proteolysis extent, volatile compounds, and sensory profile. Results evidenced that experimental cheeses were characterized by lower numbers of viable lactobacilli respect to control. Experimental cheeses also showed differences in the progress of primary and secondary proteolysis which, in turn, caused different patterns of free amino acids at all ripening times. Experimental cheeses had significantly lower content of esters and were differentiated from control for some traits by assessors. In conclusion, use of high-speed centrifugation of milk shall be discouraged if characteristic traits of raw-milk cheeses, particularly PDO cheeses, want to be retained.


Subject(s)
Cheese , Microbiota , Animals , Milk , Amino Acids , Centrifugation
4.
Foods ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36981197

ABSTRACT

Biopolymers of different natures (carbohydrates, proteins, etc.) recovered from by-products of industrial processes are increasingly being studied to obtain biomaterials as alternatives to conventional plastics, thus contributing to the implementation of a circular economy. The food industry generates huge amounts of by-products and waste, including unsold food products that reach the end of their shelf life and are no longer usable in the food chain. Milk proteins can be easily separated from dairy waste and adapted into effective bio-based polymeric materials. Firstly, this review describes the relevant properties of milk proteins and the approaches to modifying them for subsequent use. Then, we provide an overview of recent studies on the development of films and coatings based on milk proteins and, where available, their applications in food packaging. Comparisons among published studies were made based on the formulation as well as production conditions and technologies. The role of different additives and modifiers tested for the performances of films and coatings, such as water vapor permeability, tensile strength, and elongation at break, were reviewed. This review also outlines the limitations of milk-protein-based materials, such as moisture sensitivity and brittleness. Overall, milk proteins hold great potential as a sustainable alternative to petroleum-based polymers. However, their use in food packaging materials at an industrial level remains problematic.

5.
Molecules ; 26(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34500729

ABSTRACT

Light exposure of white wine can cause a light-struck taste (LST), a fault induced by riboflavin (RF) and methionine (Met) leading to the formation of volatile sulfur compounds (VSCs), including methanethiol (MeSH) and dimethyl disulfide (DMDS). The study aimed to investigate the impact of different antioxidants, i.e., sulfur dioxide (SO2), glutathione (GSH) and chestnut tannins (CT), on preventing LST in model wine (MW) and white wine (WW), both containing RF and Met. Both MW and WW samples were added with the antioxidants, either individually or in different combinations, prior to 2-h light exposure and they were stored in the dark for 24 months. As expected, the light induced the degradation of RF in all the conditions assayed. Met also decreased depending on the antioxidants added. The presence of antioxidants limited the formation of LST as lower concentrations of VSCs were found in both MW and WW samples. In the latter matrix, neither MeSH nor DMDS were detected in the presence of CT, while only DMDS was found in WW+GSH, WW+SO2+GSH and WW+CT+SO2 samples at a concentration lower than the perception thresholds. Considering the antioxidants individually, the order of their effectiveness was CT ≥ GSH > SO2 in WW under the adopted experimental conditions. The results indicate tannins as an effective enological tool for preventing LST in white wine and their use will be further investigated in different white wines under industrial scale.


Subject(s)
Glutathione/chemistry , Hydrolyzable Tannins/chemistry , Light , Sulfur Dioxide/chemistry , Wine
6.
ACS Omega ; 5(40): 26220-26229, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33073148

ABSTRACT

Riboflavin (RF) is a well-known photosensitizer, responsible for the light-induced oxidation of methionine (Met) leading to the spoilage of wine. An NMR approach was used to investigate the role of gallic acid (GA) and sulfur dioxide (SO2) in the RF-mediated photo-oxidation of Met. Water solutions of RF and Met, with and without GA or SO2, were exposed to visible light for increasing time in both air and nitrogen atmospheres. Upon light exposure, a new signal appeared at 2.64 ppm that was assigned to the S(O)CH3 moiety of methionine sulfoxide. Its formation rate was lower in a nitrogen atmosphere and even lower in the presence of GA, supporting the ability of this compound in quenching the singlet oxygen. In contrast, SO2 caused relevant oxidation of Met, moderately observed even in the dark, making Met less available in donating electrons to RF. The competition of GA versus Met photo-oxidation was revealed, indicating effectiveness of this antioxidant against the light-dependent spoilage of wine. A pro-oxidant effect of SO2 toward Met was found as a possible consequence of radical pathways involving oxygen.

7.
Nanomaterials (Basel) ; 10(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878236

ABSTRACT

Nowadays, environmental pollution due to synthetic polymers represents one of the biggest worldwide challenges. As demonstrated in numerous scientific articles, plant-based nanocellulose (NC) is a biodegradable and nontoxic material whose mechanical, rheological, and gas barrier properties are competitive compared to those of oil-based plastics. However, the sensitivity of NC in humid ambient and lack of thermosealability have proven to be a major obstacle that hinders its breakthrough in various sectors including food packaging. In recent years, attempts have been made in order to provide a hydrophobic character to NC through chemical modifications. In addition, extensive works on nanocellulose applications in food packaging such as coating, layer-by-layer, casting, and electrospinning have been reported. Despite these enormous advances, it can easily be observed that packaging manufacturers have not yet shown a particular interest in terms of applicability and processability of the nanocellulose due to the lack of guidelines and guarantee on the success of their implementation. This review is useful for researchers and packaging manufacturers because it puts emphasis on recent works that have dealt with the nanocellulose applications and focuses on the best strategies to be adopted for swift and sustainable industrial manufacturing scale-up of high-performance bio-based/compostable packaging in replacement of the oil-based counterparts used today.

8.
Foods ; 9(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708437

ABSTRACT

In this study, the volatile profile of Trebbiano di Lugana wine was determined and its chemical composition was considered to understand its potential longevity. Seven wine samples produced in different years (2005-2017) were collected by the same winery and analyzed up to 13 years after bottling. Color, total and polymeric phenols, glutathione, free volatiles and sensory characteristics were assessed. The color turned from yellow to an increased brownish hue as the aging time increased; nonetheless, it was stable up to five years from the production. Thirty-six aroma compounds were detected including higher alcohols, esters, and norisoprenoids (ß-damascenone and ß-oxo-ionone). While higher alcohols did not show a dependence on the different years of production, a decrease of esters was found over aging with the exception of wine produced in 2009, the latter showing higher levels of glutathione that could limit esters' hydrolysis. The perception of floral and fruity notes was dependent on the storage time with little differences up to five years after bottling. Trebbiano di Lugana wine could be suitable for aging and this aptitude might be further improved also through the proper choice of closure and packaging systems to encourage logistic and marketing strategies.

9.
Food Chem ; 329: 127116, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32516718

ABSTRACT

The stability of whole pasteurized milk packaged in clear PET bottles was studied throughout 13-days storage in the dark, but including, at specific times, light exposure of 6, 12 or 18 h to simulate conditions potentially occurring in refrigerated display counters. The aim was to investigate the effects of light exposure when overlapping the unavoidable endogenous modifications in pasteurized milk during storage. Dissolved oxygen, riboflavin and other flavins, proteolysis products, volatile compounds, and sensory characteristics were evaluated. Besides the expected progress of proteolysis occurring during storage, light negatively affected milk flavour especially after longer exposure times. The development of "mushroom" flavor related to the increase of volatile 2,3 octanedione was the most characterizing modification. Gathered data were considered in view of providing the background knowledge for the control of light exposure conditions on a retail display, thus supporting the shelf life extension of pasteurized milk in a fully recyclable packaging.


Subject(s)
Food Packaging , Milk/chemistry , Polyethylene Terephthalates , Animals , Light , Recycling , Taste
10.
Foods ; 9(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131400

ABSTRACT

Extending ripening of hard cheeses well beyond the traditional ripening period is becoming increasingly popular, although little is known about the actual evolution of their characteristics. The present work aimed at investigating selected traits of Parmigiano Reggiano cheese ripened for 12, 18, 24, 30, 40 and 50 months. Two cheeses per each ripening period were sampled. Although moisture constantly decreased and was close to 25% in 50-month cheeses, with a parallel increase in cheese hardness, several biochemical changes occurred involving the activity of both native and microbial enzymes. Capillary electrophoresis demonstrated degradation of αs1- and ß-casein, indicating residual activity of both chymosin and plasmin. Similarly, continuous release of free amino acids supported the activity of peptidases deriving from lysed bacterial cells. Volatile flavor compounds, such as short-chain fatty acids and some derived ketones, alcohols and esters, evaluated by gas chromatography with solid-phase micro-extraction, accumulated as well. Cheese microstructure was characterized by free fat trapped in irregularly shaped areas within a protein network, with native fat globules being no longer visible. This study showed for the first time that numerous biochemical and structural variations still occur in a hard cheese at up to 50 months of aging, proving that the ripening extension deserves to be highlighted to the consumer and may justify a premium price.

11.
Polymers (Basel) ; 12(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906478

ABSTRACT

In contrast to conventional approaches, which are considered to be energy- and time-intensive, expensive, and not green, herein, we report an alternative microwave-assisted ammonium persulfate (APS) method for cellulose nanocrystals (CNCs) production, under pressurized conditions in a closed reaction system. The aim was to optimize the hydrolytic-oxidative patented procedure (US 8,900,706), replacing the conventional heating with a faster process that would allow the industrial scale production of the nanomaterial and make it more appealing to a green economy. A microwave-assisted process was performed according to different time-temperature programs, varying the ramp (from 5 to 40 min) and the hold heating time (from 60 to 90 min), at a fixed reagent concentration and weight ratio of the raw material/APS solution. Differences in composition, structure, and morphology of the nanocrystals, arising from traditional and microwave methods, were studied by several techniques (TEM, Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance (ATR), dynamic light scattering (DLS), electrophoretic light scattering (ELS), thermogravimetric analysis (TGA), X-ray diffraction (XRD)), and the extraction yields were calculated. Fine tuning the microwave treatment variables, it was possible to realize a simple, cost-effective way for faster materials' preparation, which allowed achieving high-quality CNCs, with a defined hydrodynamic diameter (150 nm) and zeta potential (-0.040 V), comparable to those obtained using conventional heating, in only 90 min instead of 16 h.

12.
Food Chem ; 298: 124952, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31260994

ABSTRACT

The riboflavin-mediated photo-degradation of methionine in white wine has been related to onset of undesired light-struck taste. This research investigated the effects of different concentrations of riboflavin and methionine, hydrolysable tannins from various sources (nut galls, chestnut and oak woods) and sulfur dioxide on methionine degradation in a model wine exposed to light. Increased methionine concentration resulted in its increased degradation with the consequent formation of volatile sulfur compounds, namely methanethiol, dimethyl disulphide and dimethyl trisulphide. Tannins, especially nut gall tannin, were effective in limiting both methionine degradation and the production of volatile sulfur compounds. Sulfur dioxide enhanced the methionine degradation although the light-struck taste was not perceived when sulfur dioxide concentration was higher than 50 mg/L. In conclusion, the use of hydrolysable tannins can represent a promising tool for protecting white wine against the light-struck taste also limiting the use of sulfur dioxide.


Subject(s)
Hydrolyzable Tannins/chemistry , Methionine/chemistry , Riboflavin/chemistry , Sulfur Dioxide/chemistry , Wine , Disulfides/chemistry , Light , Methionine/metabolism , Photochemical Processes , Sulfhydryl Compounds/chemistry , Taste/drug effects , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Wine/analysis
13.
J Food Prot ; 81(7): 1142-1156, 2018 07.
Article in English | MEDLINE | ID: mdl-29939788

ABSTRACT

Interest in the utilization of antimicrobial active packaging for food products has increased in recent years. Antimicrobial active packaging involves the incorporation of antimicrobial compounds into packaging materials, with the aim of maintaining or extending food quality and shelf life. Plant extracts, essential oils, organic acids, bacteriocins, inorganic substances, enzymes, and proteins are used as antimicrobial agents in active packaging. Evaluation of the antimicrobial activity of packaging materials using different methods has become a critical issue for both food safety and the commercial utilization of such packaging technology. This article reviews the different types of antimicrobial agents used for active food packaging materials, the main incorporation techniques, and the assessment methods used to examine the antimicrobial activity of packaging materials, taking into account their safety as food contact materials.


Subject(s)
Anti-Infective Agents , Food Packaging/methods , Food Preservation/methods , Oils, Volatile , Anti-Infective Agents/pharmacology , Food Quality
14.
Food Chem ; 230: 532-539, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28407945

ABSTRACT

The aim of this study was the shelf life extension of whole-wheat breadsticks through the addition of a rosemary extract and packaging under nitrogen. Shelf life was studied at four temperatures (20, 27, 35, 48°C) for up to 200 storage days. The minimal changes observed in moisture, water activity and texture of the samples, coupled with the high peroxide values (13-539meqO2/kgfat) measured at the end of storage, and the exponential increase of hexanal concentrations (up to 13-34mg/kg) confirmed that quality decay of whole-wheat breadsticks is mainly associated to lipid oxidation. The kinetic study of oxidation development and the consumer sensory acceptance determined by the survival analysis demonstrated that the rosemary extract addition yields a 42% shelf life extension, higher than that observed using nitrogen in the package (24-29%). The combination of the formulation and packaging strategies gave the best result (83% shelf life extension at 25°C).


Subject(s)
Food Packaging/methods , Triticum/chemistry , Food Storage
15.
J Sci Food Agric ; 94(11): 2205-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24343590

ABSTRACT

BACKGROUND: Polyethylene terephthalate (PET) containers for food oil packaging were evaluated with a newly established determination method for terephthalic acid (TPA) and isophthalic acid (IPA). The analysis of monomers, TPA and IPA that migrate from PET bottles into oils was performed using high-pressure liquid chromatography with a diode array detector. Three types of commercial oils (sunflower oil, canola oil and blended oil which included sunflower oil, soy bean oil and cottonseed oil) were bottled in PET containers. These samples were incubated for 10 days at 49 °C as accelerated test condition. RESULTS: The means of recovery for this method varied from 70% to 72% and from 101% to 111% for TPA and IPA, respectively. The results showed that the amounts of specific migration of TPA and IPA into the samples conform to European Union legislation that identifies specific migration limits. More important, the results highlighted a different behavior of migration as a function of the fatty acid profile. CONCLUSION: Previous investigations have been performed with food simulants such as HB307 or 20% ethanol but our study used real food samples and determined trace amounts of the migrated compounds. Further investigation will be needed to better explain the influence of fatty acid conformation on migration of PET monomers.


Subject(s)
Environmental Exposure/analysis , Food Contamination/analysis , Food Packaging , Food Storage , Phthalic Acids/analysis , Plant Oils/chemistry , Polyethylene Terephthalates/analysis , Chromatography, High Pressure Liquid/methods , Cottonseed Oil , Diet , European Union , Fatty Acids/analysis , Fatty Acids, Monounsaturated , Humans , Rapeseed Oil , Soybean Oil , Sunflower Oil
16.
Meat Sci ; 86(3): 748-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20655668

ABSTRACT

Meat freshness has been monitored by various microbiological, chemical and sensorial indices. However, these methods are slow and not suited to automation. Infrared spectroscopy is one of the most convenient analytical tools which could be used to monitor the evolution of food quality. The aim of this work was to investigate the ability of both NIR (Near Infrared) and MIR (Mid Infrared) spectroscopy to follow meat freshness decay. The minced beef was packaged in high-oxygen modified atmosphere (30% CO2 and 70% O2) and stored at three temperatures. Spectra were collected by Fourier-Transformation (FT)-NIR and FT-IR instruments. PCA, applied to the data, was able to discriminate samples on the basis of storage time and temperature. The modelling of PC scores versus time allowed the setting of the time of initial freshness decay for the samples (6-7 days at 4.3°C, 2-3 days at 8.1°C and less than 1 day at 15.5°C).


Subject(s)
Food Analysis/methods , Meat , Spectrophotometry, Infrared/methods , Spectroscopy, Near-Infrared/methods , Animals , Atmosphere , Cattle , Food Preservation/methods , Models, Biological , Oxygen , Spectroscopy, Fourier Transform Infrared/methods , Temperature
17.
J Agric Food Chem ; 55(13): 5238-45, 2007 Jun 27.
Article in English | MEDLINE | ID: mdl-17539657

ABSTRACT

The aim of this work was to investigate the reaction kinetics of beta-carotene in an aqueous medium as a function of exposure to commercial lights (halogen and fluorescent sources) and oxygen partial pressures. The evolution of the pigment concentration, the changes in color, and the accumulation of a volatile compound (beta-ionone) were monitored during storage. The kinetics of degradation were mathematically modeled to compare the effects of lighting conditions and oxygen partial pressures. Lighting was also a critical variable in the presence of a low oxygen partial pressure (5 kPa), and in these conditions, the beta-carotene degraded completely during storage, even if more slowly than at 20 kPa of O2. The pigment degradation was correlated to illuminance and UVA irradiance values, but the different decay rates of the fluorescent lamps were explained by the differences in the blue region of the energy emission spectra. A halogen lamp gave minor negative effects on beta-carotene degradation.


Subject(s)
Light , Oxygen/administration & dosage , beta Carotene/chemistry , Fluorescence , Halogens , Kinetics , Norisoprenoids/analysis , Partial Pressure , Solutions , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...