Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Geohealth ; 8(6): e2024GH001081, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887469

ABSTRACT

Metals and metalloids (hereafter, metal(loid)s) in plant-based foods are a source of exposure to humans, but not all metal(loid)-food interactions are the same. Differences exist between metal(loid)s in terms of their behavior in soils and in how they are taken up by plants and stored in the edible plant tissue/food. Thus, there cannot be one consistent solution to reducing toxic metal(loid)s exposure to humans from foods. In addition, how metal(loid)s are absorbed, distributed, metabolized, and excreted by the human body differs based on both the metal(loid), other elements and nutrients in the food, and the nutritional status of the human. Initiatives like the United States Food and Drug Administration's Closer to Zero initiative to reduce the exposure of young children to the toxic elements cadmium, lead, arsenic, and mercury from foods warrant careful consideration of each metal(loid) and plant interaction. This review explores such plant-metal(loid) interactions using the example of spinach and the metals cadmium and lead. This review highlights differences in the magnitude of exposure, bioavailability, and the practicality of mitigation strategies while outlining research gaps and future needs. A focus on feasibility and producer needs, informed via stakeholder interviews, emphasizes the need for better analytical testing facilities and grower and consumer education. More research should focus on minimization of chloride inputs for leafy greens to lessen plant-availability of Cd and the role of oxalate in reducing Cd bioavailability from spinach. These findings are applicable to other leafy greens (e.g., kale, lettuce), but not for other plants or metal(loid)s.

2.
Appl Environ Microbiol ; 89(12): e0057023, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38009924

ABSTRACT

IMPORTANCE: In waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (Sideroxydans and Gallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.


Subject(s)
Gallionellaceae , Oryza , Soil Pollutants , Iron/metabolism , Gallionellaceae/metabolism , Oryza/microbiology , Ecosystem , Oxidation-Reduction , Bacteria/genetics , Bacteria/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Plant Roots/microbiology , Cadmium/metabolism
3.
Sci Total Environ ; 903: 166496, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37611706

ABSTRACT

Rice production results in residues of straw and husk, and the management of these residues has implications for the sustainability of the rice agroecosystem. Rice straw is typically incorporated into soil either as fresh residue or is burned prior to incorporation. Rice husk is not typically returned to rice fields. However, rice husk contains high levels of silicon, which has been shown to decrease rice accumulation of arsenic. In this work, we studied the resulting biogeochemical changes in rice paddy soils when paddies were amended with either straw or burned straw and either no husk, husk, or burned husk over two years. Using a full-factorial design, we observed that the higher lability of rice straw carbon controlled redox-sensitive processes despite the application of husk and straw at similar carbon rates. Amending paddies with straw, rather than burned straw, increased porewater Fe and As, plant As, and methane emissions regardless of husk amendment. Husk addition provided insignificant Si to the plant despite its high concentration of Si, suggesting limited short-term mobility of Si and that long-term additions of husk or higher rates may need to be studied.

4.
J Environ Manage ; 339: 117936, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37068400

ABSTRACT

Rice agriculture feeds over half the world's population, and paddy soils impact the carbon cycle through soil organic carbon (SOC) preservation and production of carbon dioxide (CO2) and methane (CH4), which are greenhouse gases (GHG). Rice husk is a nutrient-rich, underutilized byproduct of rice milling that is sometimes pyrolyzed or combusted. It is unresolved how the incorporation of these residues affects C dynamics in paddy soil. In this study, we sought to determine how untreated (Husk), low-temperature pyrolyzed (Biochar), and combusted (CharSil) husk amendments affect SOC levels, GHG emissions, and dissolved organic matter (DOM) chemistry. We amended Ultisol paddy mesocosms and collected SOC and GHG data for three years of rice grown under alternate wetting and drying (AWD) conditions. We also performed a greenhouse pot study that included water management treatments of nonflooded, AWD, and flooded. Husk, Biochar, and CharSil amendments and flooding generally increased SOC storage and CH4 emissions, while nonflooded conditions increased N2O emissions and nonflooded and CharSil treatments increased CO2 emissions. All amendments stored ∼0.15 kg C m-2 y-1 more SOC than CH4 emissions (as CO2 equivalents), but the combustion of husk to produce CharSil resulted in the net release of CO2 which negates any SOC storage. UV-visible absorption/fluorescence spectroscopy from the pot study suggests that nonflooded treatment decreased DOM aromaticity and molecular size. Our data show that flooding and amendment of Husk and Biochar maximized C storage in the highly weathered rice paddy soil under study despite Husk increasing CH4 emissions. Water management affected dissolved organic matter chemistry more strongly than amendments, but this requires further investigation. Return of rice husk that is untreated or pyrolyzed at low temperature shows promise to close nutrient loops and preserve SOC in rice paddy soils.


Subject(s)
Greenhouse Gases , Oryza , Soil/chemistry , Dissolved Organic Matter , Carbon Dioxide/analysis , Carbon , Agriculture/methods , Greenhouse Gases/analysis , Charcoal , Methane/analysis , Water Supply , Nitrous Oxide/analysis
5.
Environ Sci Technol ; 57(16): 6530-6539, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37053498

ABSTRACT

Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and used as an indicator of reducing conditions in soils. Manganese IRIS, coated with birnessite, can also oxidize Fe(II), resulting in a color change from brown to orange that complicates the interpretation of coating removal. Here, we studied field-deployed Mn IRIS films where Fe oxidation was present to unravel the mechanisms of Mn oxidation of Fe(II) and the resulting minerals on the IRIS film surface. We observed reductions in the Mn average oxidation state when Fe precipitation was evident. Fe precipitation was primarily ferrihydrite (30-90%), but lepidocrocite and goethite were also detected, notably when the Mn average oxidation state decreased. The decrease in the average oxidation state of Mn was due to the adsorption of Mn(II) to the oxidized Fe and the precipitation of rhodochrosite (MnCO3) on the film. The results were variable on small spatial scales (<1 mm), highlighting the suitability of IRIS in studying heterogeneous redox reactions in soil. Mn IRIS also provides a tool to bridge lab and field studies of the interactions between Mn oxides and reduced constituents.


Subject(s)
Ferric Compounds , Soil , Oxidation-Reduction , Oxides , Manganese , Ferrous Compounds
6.
J Synchrotron Radiat ; 30(Pt 2): 407-416, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36891854

ABSTRACT

Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Z elements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg-1 in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.


Subject(s)
Arsenic , Oryza , Humans , X-Rays , Synchrotrons , Arsenic/analysis , Radiography
7.
Int J Phytoremediation ; 25(9): 1215-1224, 2023.
Article in English | MEDLINE | ID: mdl-36356305

ABSTRACT

This study investigated uptake of two organic compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and exogenous caffeine by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.). The plants were grown in a growth chamber under recommended conditions and then were exposed to these compounds for 19 days. The uptake of the compounds was measured by sap concentration factor. The plant samples (stem transpiration stream) and solution in the exposure media were taken and analyzed by high performance liquid chromatography-tandem mass spectrometry. The plant stem samples were analyzed after a freeze-thaw centrifugation process. The average sap concentration factor for the RDX by tomato, wheat, and corn was 0.71, 0.67, and 0.65. The average sap concentration factor for the exogenous caffeine by tomato, wheat, and corn was 0.72, 0.50, and 0.34. These relatively high sap concentration factor values were expected as available predictive models offer high sap concentration factor values for moderately hydrophobic and hydrophilic compounds. The generated sap concentration factor values for the RDX and exogenous caffeine are important for improving the accuracy of previously developed machine learning models predicting the uptake and translocation of emerging contaminants.


The uptake of two organic compounds (RDX and exogenous caffeine) was examined in three crop plants (corn, wheat, and tomato). There have not been any uptake studies on exogenous caffeine and also we do not have good data for the uptake of RDX by these three crop plants. The estimated sap concentration factor from these experiments fills the gap in the data for developing predictive models for uptake of emerging contaminants. A novel rapid freeze­thaw/centrifugation extraction method followed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze the samples.


Subject(s)
Solanum lycopersicum , Triticum , Triticum/chemistry , Zea mays/chemistry , Caffeine , Biodegradation, Environmental , Crops, Agricultural
8.
Sci Rep ; 12(1): 5210, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338249

ABSTRACT

Previous work has shown that inorganic As localizes in rice bran whereas DMA localizes in the endosperm, but less is known about co-localization of As and S species and how they are affected by growing conditions. We used high-resolution synchrotron X-ray fluorescence imaging to image As and S species in rice grain from plants grown to maturity in soil (field and pot) and hydroponically (DMA or arsenite dosed) at field-relevant As concentrations. In hydroponics, arsenite was localized in the ovular vascular trace (OVT) and the bran while DMA permeated the endosperm and was absent from the OVT in all grains analyzed, and As species had no affect on S species. In pot studies, soil amended with Si-rich rice husk with higher DMA shifted grain As into the endosperm for both japonica and indica ecotypes. In field-grown rice from low-As soil, As localized in the OVT as arsenite glutathione, arsenite, and DMA. Results support a circumferential model of grain filling for arsenite and DMA and show Si-rich soil amendments alter grain As localization, potentially lessening risk to rice consumers.


Subject(s)
Arsenic , Arsenites , Oryza , Soil Pollutants , Arsenic/analysis , Arsenic/toxicity , Arsenites/toxicity , Edible Grain/chemistry , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
9.
J Environ Manage ; 294: 112920, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34130132

ABSTRACT

Rice is a crucial part of the world's food supply but is also susceptible to uptake of contaminants including arsenic (As) and cadmium (Cd) depending on the soil redox potential. Careful control of soil redox state by implementing alternate wetting and drying (AWD) water management can decrease mobility of soil As and Cd, but can be difficult to manage. Indicators of reduction in soil (IRIS) tubes and films have been studied by pedologists for wetland delineation; here, we explore the use of the IRIS film technology as passive samplers of soil redox potential in rice paddies. The goal of this study was to test the response time of IRIS films under different water management (i.e., variable soil redox potentials). After paddy soils were exposed to severe or safe AWD, where rice paddies were allowed to dry to >30 cm below the soil surface and 15 cm below the soil surface, respectively, IRIS films, coated with Fe oxide or Mn oxide paint, were installed. Immediately following IRIS film installation, soils were reflooded, and percent removal of Fe or Mn oxides were monitored on films that were removed every 12 h for Fe films, and every 6 h for Mn films. Porewater was collected at installation and every 12 h during the studies to observe correlations between IRIS film paint removal and porewater chemistry. We observed quicker paint removal for Mn films than Fe films, and paint removal varied due to growing season and water management. Moreover, correlations between porewater chemistry and Mn paint removal were observed. While further work is still needed to understand kinetics of IRIS paint removal as it relates to porewater parameters, this work illustrates that IRIS films are a low-cost tool that rice farmers can use to better manage water and we highlight considerations for possible implementation strategies for the future.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Farmers , Humans , Oxidation-Reduction , Soil , Soil Pollutants/analysis , Water , Water Supply
10.
J Agric Food Chem ; 69(18): 5428-5434, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33926188

ABSTRACT

Emerging and fugitive contaminants (EFCs) can be introduced into the food chain through plants, particularly crop plants, and have threatened food safety and human health. The method for determination of volatile EFCs in plant tissues remains challenging. A new rapid, simple, precise, and accurate freeze-thaw-equilibration followed by head space (HS)-solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) analytical method was developed in this study for high-throughput analysis of 1,4-dioxane and 1,2,3-trichloropropane (TCP) in tissues of three representative crop plants, corn, wheat, and tomato. The samples were treated by a freeze-thaw procedure, then equilibrated in a saturated sodium sulfate solution, and analyzed by HS-SPME-GC-MS method. Method detection limits ranged from 0.6 to 16 ng/g. The calibration showed good linearity (R2 > 0.9). Recoveries of spiked analytes in the three plant species ranged from 82.69 to 106.3%. The ability of plant uptake of the compounds from soil has been investigated. As demonstrated in this study, this method is used to measure the concentrations of volatile contaminants in the stems of crop plants. This method should also be applicable for other plant tissues and therefore will contribute significantly to the sight of EFC transport in plants and to assess the potential risks EFCs pose to food safety and human health.


Subject(s)
Solanum lycopersicum , Volatile Organic Compounds , Freezing , Gas Chromatography-Mass Spectrometry , Humans , Solid Phase Microextraction , Triticum , Volatile Organic Compounds/analysis
11.
J Vis Exp ; (168)2021 02 15.
Article in English | MEDLINE | ID: mdl-33645568

ABSTRACT

Roots extensively interact with their soil environment but visualizing such interactions between roots and the surrounding rhizosphere is challenging. The rhizosphere chemistry of wetland plants is particularly challenging to capture because of steep oxygen gradients from the roots to the bulk soil. Here a protocol is described that effectively preserves root structure and rhizosphere chemistry of wetland plants through slam-freezing and freeze drying. Slam-freezing, where the sample is frozen between copper blocks pre-cooled with liquid nitrogen, minimizes root damage and sample distortion that can occur with flash-freezing while still minimizing chemical speciation changes. While sample distortion is still possible, the ability to obtain multiple samples quickly and with minimal cost increases the potential to obtain satisfactory samples and optimizes imaging time. The data show that this method is successful in preserving reduced arsenic species in rice roots and rhizospheres associated with iron plaques. This method can be adopted for studies of plant-soil relationships in a wide variety of wetland environments that span concentration ranges from trace-element cycling to phytoremediation applications.


Subject(s)
Elements , Imaging, Three-Dimensional/methods , Plant Roots/chemistry , Rhizosphere , Wetlands , Freeze Drying , Oryza/anatomy & histology , Soil/chemistry
12.
Sci Total Environ ; 765: 144428, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33412375

ABSTRACT

Arsenic (As) and cadmium (Cd) are two toxins that affect rice, and their ability to do so may be lessened by soil incorporation of rice husk residues. Rice husks are typically removed from fields and used as a fuel source at rice mills but contain silicon (Si) and other nutrients. It has previously been shown that soil incorporation of rice husk or charred husk can release Si to soil solution to decrease As uptake and promote As methylation, and studies suggest char can additionally decrease Cd availability through several potential mechanisms including adsorption, precipitation, liming, and growth dilution. Charring conditions will impact husk Si dissolution rate and potential to immobilize Cd and possibly methylated As. Here, we compared uncharred husk to husk biochars pyrolyzed at 450, 600, 750, and 900 °C for differences in Si dissolution rate and adsorption of Cd and dimethylarsinic acid (DMA)-the dominant methylated As species present in paddy soils and grain. We hypothesized that Si dissolution rate and Cd adsorption would decrease, and DMA adsorption would increase with pyrolysis temperature. Si release decreased with pyrolysis temperature in the general order: uncharred husk > 450 °C > 600 °C = 750 °C = 950 °C but those differences were not due to SiO2 crystallization with increasing temperature. Additionally, short (< 5 d) lab-based extractions underestimate Si release from uncharred husk while overestimating release from biochars. Controlling for pH changes/liming effect, adsorption isotherms showed very weak DMA adsorption, while Cd adsorption was favored on higher temperature (950 °C) biochar and was not predicted well by cation exchange capacity (CEC). When applied in a soil incubation study using non-contaminated soil, the biochar had no impact on Cd porewater concentrations while low temperature (450 °C) rice husk biochar led to the highest Si:As ratio. Biochar did not strongly influence Cd and DMA solubility at 1% w/w amendment.


Subject(s)
Oryza , Soil Pollutants , Cacodylic Acid , Cadmium/analysis , Charcoal , Pyrolysis , Silicon/analysis , Soil , Soil Pollutants/analysis , Solubility , Temperature
13.
Environ Sci Technol ; 55(2): 912-918, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33375793

ABSTRACT

The roots of aquatic plants, including rice, release oxygen into the subsurface, precipitating reduced metals, such as iron (Fe) and manganese (Mn), as plaques that form on the surface of the roots. These plaques are a unique habitat for microorganisms and a hotspot for biogeochemical cycling, including the toxic trace metalloid arsenic (As). However, studying plaque deposition and mineral composition in this spatially and temporally heterogeneous environment is challenging, particularly in situ. Here, we describe a new technique for nondestructive and repeated rhizosphere sampling. We placed vinyl films that adhere Fe deposits from roots growing adjacent to the films into soil. The films were removed and replaced throughout plant growth and were characterized using a variety of spectroscopic (XRF imaging and Fe EXAFS) and microscopic (SEM and confocal) techniques. Fe deposits were most concentrated at lateral junctions and heterogeneity was apparent in the location and speciation of Fe-associated As in both pot and field studies. XRF imaging at multiple incident beam energies revealed that this As was mostly arsenate, although arsenite was present on the edge of the Fe deposit. Iron deposits were typically micron sized and consisted mostly of ferrihydrite, consistent with the data reported using conventional techniques. Moreover, Fe deposits were occupied by a variety of microorganisms. These films are a suitable technique to study a range of spatial and temporal questions regarding the biogeochemistry of aquatic plant roots.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Iron , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
14.
Sci Total Environ ; 751: 141418, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33181989

ABSTRACT

Uptake of seven organic contaminants including bisphenol A, estriol, 2,4-dinitrotoluene, N,N-diethyl-meta-toluamide (DEET), carbamazepine, acetaminophen, and lincomycin by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.) was measured. The plants were grown in a growth chamber under recommended conditions and dosed by these chemicals for 19 days. The plant samples (stem transpiration stream) and solution in the exposure media were taken to measure transpiration stream concentration factor (TSCF). The plant samples were analyzed by a freeze-thaw centrifugation technique followed by high performance liquid chromatography-tandem mass spectrometry detection. Measured average TSCF values were used to test a neural network (NN) model previously developed for predicting plant uptake based on physicochemical properties. The results indicated that moderately hydrophobic compounds including carbamazepine and lincomycin have average TSCF values of 0.43 and 0.79, respectively. The average uptake of DEET, estriol, acetaminophen, and bisphenol A was also measured as 0.34, 0.29, 0.22, and 0.1, respectively. The 2,4-dinitrotoluene was not detected in the stem transpiration stream and it was shown to degrade in the root zone. Based on these results together with plant physiology measurements, we concluded that physicochemical properties of the chemicals did predict uptake, however, the role of other factors should be considered in the prediction of TSCF. While NN model could predict TSCF based on physicochemical properties with acceptable accuracies (mean squared error less than 0.25), the results for 2,4-dinitrotoluene and other compounds confirm the needs for considering other parameters related to both chemicals (stability) and plant species (role of lipids, lignin, and cellulose).


Subject(s)
Neural Networks, Computer , Solanum lycopersicum , Biological Transport , Plant Roots , Plant Transpiration , Triticum , Zea mays
15.
J Agric Food Chem ; 67(46): 12927-12935, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31657558

ABSTRACT

Emerging and fugitive contaminants (EFCs) released to our biosphere have caused a legacy and continuing threat to human and ecological health, contaminating air, water, and soil. Polluted media are closely linked to food security through plants, especially agricultural crops. However, measuring EFCs in plant tissues remains difficult, and high-throughput screening is a greater challenge. A novel rapid freeze-thaw/centrifugation extraction followed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis was developed for high-throughput quantification of 11 EFCs with diverse chemical properties, including estriol, codeine, oxazepam, 2,4-dinitrotoluene, 1,3,5-trinitroperhydro-1,3,5-triazine, bisphenol A, triclosan, caffeine, carbamazepine, lincomycin, and DEET, in three representative crops, corn, tomato, and wheat. The internal aqueous solution, i.e., sap, is liberated via a freeze/thaw cycle, and separated from macromolecules utilizing molecular weight cutoff membrane centrifugal filtration. Detection limits ranged from 0.01 µg L-1 to 2.0 µg L-1. Recoveries of spiked analytes in three species ranged from 83.7% to 109%. Developed methods can rapidly screen EFCs in agriculture crops and can assess pollutant distribution at contaminated sites and gain insight on EFCs transport in plants to assess transmembrane migration in vascular organisms. The findings contribute significantly to environmental research, food security, and human health, as it assesses the first step of potential entry into the food chain, that being transmembrane migration and plant uptake, the primary barrier between polluted waters or soils and our food.


Subject(s)
Chromatography, High Pressure Liquid/methods , Environmental Pollutants/chemistry , Plant Extracts/chemistry , Solanum lycopersicum/chemistry , Tandem Mass Spectrometry/methods , Triticum/chemistry , Zea mays/chemistry , Centrifugation , Environmental Pollutants/isolation & purification , Filtration , Food Contamination/analysis , Green Chemistry Technology/methods , High-Throughput Screening Assays/methods , Plant Extracts/isolation & purification
16.
Environ Int ; 128: 301-309, 2019 07.
Article in English | MEDLINE | ID: mdl-31077999

ABSTRACT

Increasing plant-availability of Si through soil amendment of Si-rich rice residues can decrease inorganic As without affecting Cd levels in grain under flooded soil conditions. However, the impacts of Si amendments on Cd and As uptake by rice under different flooding extents have not been reported. We investigated the effects of different flooding extent on As and Cd uptake by rice and accumulation in grain in well-weathered soil amended with Si-rich rice husk (Husk) or mixed charred/ashed rice husk (Ash). Our results show that Husk and to a lesser extent Ash amendments decreased grain As under both flooded (~40% and 20% decrease, respectively) and nonflooded (~75% decrease) conditions due to increased Si. Under flooded conditions grain As and yield is higher, and Husk amendment additionally decreased grain inorganic As by ~45%. Under nonflooded conditions grain Cd is higher and yield is lower, and Ash amendment decreased grain, husk, and straw Cd by ~40-50% not due to Si, but due to increased aboveground biomass and an increase in soil pH, which helped to retain Cd in soil. These data illustrate that rice residue addition to paddy soil can lower human health risk under both flooded and nonflooded conditions without affecting grain Zn and Fe.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Floods , Food Contamination/analysis , Oryza/chemistry , Silicon/analysis , Soil Pollutants/analysis , Agriculture/methods , Edible Grain/chemistry
17.
Int J Phytoremediation ; 20(7): 666-674, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29723051

ABSTRACT

Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10-2-100 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.


Subject(s)
Benzene , Soil Pollutants , Biodegradation, Environmental , Chlorobenzenes , Toluene
18.
PLoS One ; 13(2): e0193247, 2018.
Article in English | MEDLINE | ID: mdl-29451904

ABSTRACT

Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the study area and offered comparable delineation to traditional sub-slab sampling performed at 140 properties over a period of approximately 2 years.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Tetrachloroethylene/analysis , Trees/chemistry , Environmental Biomarkers , Environmental Exposure/analysis , Volatile Organic Compounds/analysis
19.
Int J Phytoremediation ; 17(11): 1115-22, 2015.
Article in English | MEDLINE | ID: mdl-25942390

ABSTRACT

Phytoscreening has been demonstrated at a variety of sites over the past 15 years as a low-impact, sustainable tool in delineation of shallow groundwater contaminated with chlorinated solvents. Collection of tree cores is rapid and straightforward, but low concentrations in tree tissues requires sensitive analytics. Solid-phase microextraction (SPME) is amenable to the complex matrix while allowing for solvent-less extraction. Accurate quantification requires the absence of competitive sorption, examined here both in laboratory experiments and through comprehensive examination of field data. Analysis of approximately 2,000 trees at numerous field sites also allowed testing of the tree genus and diameter effects on measured tree contaminant concentrations. Collectively, while these variables were found to significantly affect site-adjusted perchloroethylene (PCE) concentrations, the explanatory power of these effects was small (adjusted R(2) = 0.031). 90th quantile chemical concentrations in trees were significantly reduced by increasing Henry's constant and increasing hydrophobicity. Analysis of replicate tree core data showed no correlation between replicate relative standard deviation (RSD) and wood type or tree diameter, with an overall median RSD of 30%. Collectively, these findings indicate SPME is an appropriate technique for sampling and analyzing chlorinated solvents in wood and that phytoscreening is robust against changes in tree type and diameter.


Subject(s)
Environmental Monitoring/methods , Groundwater/analysis , Soil Pollutants/metabolism , Solid Phase Microextraction , Trees/metabolism , Volatile Organic Compounds/metabolism , Biodegradation, Environmental , Missouri , Soil Pollutants/analysis , Species Specificity , Tetrachloroethylene/analysis , Tetrachloroethylene/metabolism , Volatile Organic Compounds/analysis
20.
Environ Sci Technol ; 48(18): 10634-40, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25140854

ABSTRACT

Long-term monitoring (LTM) of groundwater remedial projects is costly and time-consuming, particularly when using phytoremediation, a long-term remedial approach. The use of trees as sensors of groundwater contamination (i.e., phytoscreening) has been widely described, although the use of trees to provide long-term monitoring of such plumes (phytomonitoring) has been more limited due to unexplained variability of contaminant concentrations in trees. To assess this variability, we developed an in planta sampling method to obtain high-frequency measurements of chlorinated ethenes in oak (Quercus rubra) and baldcypress (Taxodium distichum) trees growing above a contaminated plume during a 4-year trial. The data set revealed that contaminant concentrations increased rapidly with transpiration in the spring and decreased in the fall, resulting in perchloroethene (PCE) and trichloroethene (TCE) sapwood concentrations an order of magnitude higher in late summer as compared to winter. Heartwood PCE and TCE concentrations were more buffered against seasonal effects. Rainfall events caused negligible dilution of contaminant concentrations in trees after precipitation events. Modeling evapotranspiration potential from meteorological data and comparing the modeled uptake and transport with the 4 years of high frequency data provides a foundation to advance the implementation of phytomonitoring and improved understanding of plant contaminant interactions.


Subject(s)
Environmental Monitoring/methods , Quercus/growth & development , Taxodium/growth & development , Tetrachloroethylene/analysis , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Groundwater/chemistry , Quercus/chemistry , Seasons , Taxodium/chemistry , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...