Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 80(8): 207, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37452879

ABSTRACT

The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.


Subject(s)
Neoplasms , PrPC Proteins , Prion Diseases , Prions , Humans , Prion Proteins/genetics , Prion Proteins/metabolism , Prion Diseases/metabolism , Receptors, Laminin/genetics , Receptors, Laminin/metabolism , Neoplasms/genetics , Biology , PrPC Proteins/genetics , PrPC Proteins/metabolism
2.
J Cell Physiol ; 237(10): 3803-3815, 2022 10.
Article in English | MEDLINE | ID: mdl-35994714

ABSTRACT

Genetic studies support the amyloid cascade as the leading hypothesis for the pathogenesis of Alzheimer's disease (AD). Although significant efforts have been made in untangling the amyloid and other pathological events in AD, ongoing interventions for AD have not been revealed efficacious for slowing down disease progression. Recent advances in the field of genetics have shed light on the etiology of AD, identifying numerous risk genes associated with late-onset AD, including genes related to intracellular endosomal trafficking. Some of the bases for the development of AD may be explained by the recently emerging AD genetic "hubs," which include the processing pathway of amyloid precursor protein and the endocytic pathway. The endosomal genetic hub may represent a common pathway through which many pathological effects can be mediated and novel, alternative biological targets could be identified for therapeutic interventions. The aim of this review is to focus on the genetic and biological aspects of the endosomal compartments related to AD progression. We report recent studies which describe how changes in endosomal genetics impact on functional events, such as the amyloidogenic and non-amyloidogenic processing, degradative pathways, and the importance of receptors related to endocytic trafficking, including the 37/67 kDa laminin-1 receptor ribosomal protein SA, and their implications for neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Endosomes/metabolism , Humans , Ribosomal Proteins/metabolism
3.
Cells ; 11(3)2022 01 29.
Article in English | MEDLINE | ID: mdl-35159276

ABSTRACT

To fight neurodegenerative diseases, several therapeutic strategies have been proposed that, to date, are either ineffective or at the early preclinical stages. Intracellular protein aggregates represent the cause of about 70% of neurodegenerative disorders, such as Alzheimer's disease. Thus, autophagy, i.e., lysosomal degradation of macromolecules, could be employed in this context as a therapeutic strategy. Searching for a compound that stimulates this process led us to the identification of a 37/67kDa laminin receptor inhibitor, NSC48478. We have analysed the effects of this small molecule on the autophagic process in mouse neuronal cells and found that NSC48478 induces the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) into the LC3-phosphatidylethanolamine conjugate (LC3-II). Interestingly, upon NSC48478 treatment, the contribution of membranes to the autophagic process derived mainly from the non-canonical m-TOR-independent endocytic pathway, involving the Rab proteins that control endocytosis and vesicle recycling. Finally, qRT-PCR analysis suggests that, while the expression of key genes linked to canonical autophagy was unchanged, the main genes related to the positive regulation of endocytosis (pinocytosis and receptor mediated), along with genes regulating vesicle fusion and autolysosomal maturation, were upregulated under NSC48478 conditions. These results strongly suggest that 37/67 kDa inhibitor could be a useful tool for future studies in pathological conditions.


Subject(s)
Autophagy , Laminin , Animals , Laminin/pharmacology , Mice , Microtubule-Associated Proteins/metabolism , Naphthols/pharmacology , Receptors, Laminin
4.
J Pers Med ; 10(4)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207563

ABSTRACT

Alzheimer's disease (AD) is a fatal neurodegenerative disorder caused by protein misfolding and aggregation, affecting brain function and causing dementia. Amyloid beta (Aß), a peptide deriving from amyloid precursor protein (APP) cleavage by-and γ-secretases, is considered a pathological hallmark of AD. Our previous study, together with several lines of evidence, identified a strict link between APP, Aß and 37/67kDa laminin receptor (LR), finding the possibility to regulate intracellular APP localization and maturation through modulation of the receptor. Here, we report that in fibroblasts from familial AD (fAD), APP was prevalently expressed as an immature isoform and accumulated preferentially in the transferrin-positive recycling compartment rather than in the Golgi apparatus. Moreover, besides the altered mitochondrial network exhibited by fAD patient cells, the levels of pAkt and pGSK3 were reduced in respect to healthy control fibroblasts and were accompanied by an increased amount of secreted Aß in conditioned medium from cell cultures. Interestingly, these features were reversed by inhibition of 37/67kDa LR by NSC47924 a small molecule that was able to rescue the "typical" APP localization in the Golgi apparatus, with consequences on the Aß level and mitochondrial network. Altogether, these findings suggest that 37/67kDa LR modulation may represent a useful tool to control APP trafficking and Aß levels with implications in Alzheimer's disease.

5.
Int J Mol Sci ; 21(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143270

ABSTRACT

Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aß) production and the amyloidogenic pathway, generating Aß, whose accumulation characterizes Alzheimer's disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aß and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aß, may mediate Aß-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3ß.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Naphthols/pharmacology , Neurons/metabolism , Receptors, Laminin/antagonists & inhibitors , Ribosomal Proteins/antagonists & inhibitors , Animals , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endosomes/drug effects , Glycosylation , Golgi Apparatus/drug effects , HeLa Cells , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Laminin , Mice , Microscopy, Fluorescence , Prion Proteins , Protein Processing, Post-Translational , Protein Transport , RNA, Small Interfering/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...