Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 156: 213711, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061158

ABSTRACT

Hollow vaterite microspheres are important materials for biomedical applications such as drug delivery and regenerative medicine owing to their biocompatibility, high specific surface area, and ability to encapsulate a large number of bioactive molecules and compounds. We demonstrated that hollow vaterite microspheres are produced by an Escherichia coli strain engineered with a urease gene cluster from the ureolytic bacteria Sporosarcina pasteurii in the presence of bovine serum albumin. We characterized the 3D nanoscale morphology of five biogenic hollow vaterite microspheres using 3D high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) tomography. Using automated high-throughput HAADF-STEM imaging across several sample tilt orientations, we show that the microspheres evolved from a smaller more ellipsoidal shape to a larger more spherical shape while the internal hollow core increased in size and remained relatively spherical, indicating that the microspheres produced by this engineered strain likely do not contain the bacteria. The statistical 3D morphology information demonstrates the potential for using biogenic calcium carbonate mineralization to produce hollow vaterite microspheres with controlled morphologies. STATEMENT OF SIGNIFICANCE: The nanoscale 3D structures of biomaterials determine their physical, chemical, and biological properties, however significant efforts are required to obtain a statistical understanding of the internal 3D morphology of materials without damaging the structures. In this study, we developed a non-destructive, automated technique that allows us to understand the nanoscale 3D morphology of many unique hollow vaterite microspheres beyond the spectroscopy methods that lack local information and microscopy methods that cannot interrogate the full 3D structure. The method allowed us to quantitatively correlate the external diameters and aspect ratios of vaterite microspheres with their hollow internal structures at the nanoscale. This work demonstrates the opportunity to use automated transmission electron microscopy to characterize nanoscale 3D morphologies of many biomaterials and validate the chemical and biological functionality of these materials.


Subject(s)
Calcium Carbonate , Escherichia coli , Calcium Carbonate/chemistry , Microscopy, Electron, Scanning , Microspheres , Escherichia coli/genetics , Microscopy, Electron, Scanning Transmission , Biocompatible Materials
2.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292910

ABSTRACT

Tissue phenotyping is foundational to understanding and assessing the cellular aspects of disease in organismal context and an important adjunct to molecular studies in the dissection of gene function, chemical effects, and disease. As a first step toward computational tissue phenotyping, we explore the potential of cellular phenotyping from 3-Dimensional (3D), 0.74 µm isotropic voxel resolution, whole zebrafish larval images derived from X-ray histotomography, a form of micro-CT customized for histopathology. As proof of principle towards computational tissue phenotyping of cells, we created a semi-automated mechanism for the segmentation of blood cells in the vascular spaces of zebrafish larvae, followed by modeling and extraction of quantitative geometric parameters. Manually segmented cells were used to train a random forest classifier for blood cells, enabling the use of a generalized cellular segmentation algorithm for the accurate segmentation of blood cells. These models were used to create an automated data segmentation and analysis pipeline to guide the steps in a 3D workflow including blood cell region prediction, cell boundary extraction, and statistical characterization of 3D geometric and cytological features. We were able to distinguish blood cells at two stages in development (4- and 5-days-post-fertilization) and wild-type vs. polA2 huli hutu ( hht ) mutants. The application of geometric modeling across cell types to and across organisms and sample types may comprise a valuable foundation for computational phenotyping that is more open, informative, rapid, objective, and reproducible.

3.
Dis Model Mech ; 15(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36125045

ABSTRACT

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.


Subject(s)
Biological Evolution , Animals , Humans , Phylogeny , Reproducibility of Results
4.
Elife ; 102021 09 16.
Article in English | MEDLINE | ID: mdl-34528510

ABSTRACT

We previously described X-ray histotomography, a high-resolution, non-destructive form of X-ray microtomography (micro-CT) imaging customized for three-dimensional (3D), digital histology, allowing quantitative, volumetric tissue and organismal phenotyping (Ding et al., 2019). Here, we have combined micro-CT with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy, and further allowed direct quantitative comparisons of melanin content across wild-type and mutant samples, including subtle phenotypes not previously noticed. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution, with potential applications in other model organisms and melanocytic neoplasms. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables.


Subject(s)
Imaging, Three-Dimensional/methods , Melanins , Silver Staining/methods , X-Ray Microtomography/methods , Zebrafish Proteins , Animals , Melanins/analysis , Melanins/chemistry , Zebrafish , Zebrafish Proteins/analysis , Zebrafish Proteins/chemistry
5.
J Am Soc Mass Spectrom ; 32(1): 255-261, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33112610

ABSTRACT

Variants of the SLC24A5 gene, which encodes a putative potassium-dependent sodium-calcium exchanger (NCKX5) that most likely resides in the melanosome or its precursor, affect pigmentation in both humans and zebrafish (Danio rerio). This finding suggests that genetic variations influencing human skin pigmentation alter melanosome biogenesis via ionic changes. Gaining an understanding of how changes in the ionic environment of organelles impact melanosome morphogenesis and pigmentation will require a spatially resolved way to characterize the chemical environment of melanosomes in pigmented tissue such as retinal pigment epithelium (RPE). The imaging mass spectrometry technique most suited for this type of cell and tissue analysis is time-of-flight secondary ion mass spectrometry (ToF-SIMS) because it is able to detect many biochemical species with high sensitivity and with submicron spatial resolution. Here, we describe chemical imaging of the RPE in frozen-hydrated sections of larval zebrafish using cryo-ToF-SIMS. To facilitate the data interpretation, positive and negative polarity ToF-SIMS image data were transformed into a single hyperspectral data set and analyzed using principal component analysis. The combination of a novel protocol and the use of multivariate data analysis allowed us to discover new marker ions that are attributable to leucodopachrome, a metabolite specific to the biosynthesis of eumelanin. The described methodology may be adapted for the investigation of other classes of molecules in frozen tissues from zebrafish and other organisms.


Subject(s)
Molecular Imaging/methods , Retinal Pigment Epithelium/diagnostic imaging , Spectrometry, Mass, Secondary Ion/methods , Animals , Cryoelectron Microscopy , Crystallins/analysis , Crystallins/chemistry , Freezing , Image Processing, Computer-Assisted/methods , Larva , Melanins/analysis , Phospholipids/analysis , Phospholipids/chemistry , Principal Component Analysis , Retinal Pigment Epithelium/chemistry , Zebrafish
6.
Elife ; 82019 05 07.
Article in English | MEDLINE | ID: mdl-31063133

ABSTRACT

Organismal phenotypes frequently involve multiple organ systems. Histology is a powerful way to detect cellular and tissue phenotypes, but is largely descriptive and subjective. To determine how synchrotron-based X-ray micro-tomography (micro-CT) can yield 3-dimensional whole-organism images suitable for quantitative histological phenotyping, we scanned whole zebrafish, a small vertebrate model with diverse tissues, at ~1 micron voxel resolutions. Micro-CT optimized for cellular characterization (histotomography) allows brain nuclei to be computationally segmented and assigned to brain regions, and cell shapes and volumes to be computed for motor neurons and red blood cells. Striking individual phenotypic variation was apparent from color maps of computed densities of brain nuclei. Unlike histology, the histotomography also allows the study of 3-dimensional structures of millimeter scale that cross multiple tissue planes. We expect the computational and visual insights into 3D cell and tissue architecture provided by histotomography to be useful for reference atlases, hypothesis generation, comprehensive organismal screens, and diagnostics.


Subject(s)
Histological Techniques/methods , Imaging, Three-Dimensional/methods , X-Ray Microtomography/methods , Zebrafish/anatomy & histology , Animals
7.
Ultramicroscopy ; 200: 6-11, 2019 05.
Article in English | MEDLINE | ID: mdl-30797183

ABSTRACT

Hydroxide formation at the surface of corroded alloys is critical for understanding early-stage oxidation of many corrosion-resistant alloys. Many hydroxides are unstable in an ambient environment and are electron-beam sensitive, limiting the use of conventionally-prepared specimens for transmission electron microscopy characterization of these alloy-water interfaces. In order to avoid sample dehydration, NiCrMo alloys corroded in a Cl--containing electrolyte solution were cryo-immobilized by plunge freezing. A cryo-focused ion beam microscope was used to thin the sample to electron transparency, while preserving the alloy-water interface, and the sample was then cryo-transferred to a transmission electron microscope for imaging and diffraction. The presence of rocksalt Ni1-xCr2x/3O and ß-Ni1-xCr2x/3(OH)2 phases and their orientational relationship to the underlying alloy were observed with electron diffraction, confirming the preservation of the surface structure through the fully-cryogenic sample preparation and analysis.

8.
J Vis Exp ; (140)2018 10 17.
Article in English | MEDLINE | ID: mdl-30394379

ABSTRACT

For over a hundred years, the histological study of tissues has been the gold standard for medical diagnosis because histology allows all cell types in every tissue to be identified and characterized. Our laboratory is actively working to make technological advances in X-ray micro-computed tomography (micro-CT) that will bring the diagnostic power of histology to the study of full tissue volumes at cellular resolution (i.e., an X-ray Histo-tomography modality). Toward this end, we have made targeted improvements to the sample preparation pipeline. One key optimization, and the focus of the present work, is a straightforward method for rigid embedding of fixed and stained millimeter-scale samples. Many of the published methods for sample immobilization and correlative micro-CT imaging rely on placing the samples in paraffin wax, agarose, or liquids such as alcohol. Our approach extends this work with custom procedures and the design of a 3-dimensional printable apparatus to embed the samples in an acrylic resin directly into polyimide tubing, which is relatively transparent to X-rays. Herein, sample preparation procedures are described for the samples from 0.5 to 10 mm in diameter, which would be suitable for whole zebrafish larvae and juveniles, or other animals and tissue samples of similar dimensions. As proof of concept, we have embedded the specimens from Danio, Drosophila, Daphnia, and a mouse embryo; representative images from 3-dimensional scans for three of these samples are shown. Importantly, our methodology leads to multiple benefits including rigid immobilization, long-term preservation of laboriously-created resources, and the ability to re-interrogate samples.


Subject(s)
Histological Techniques/methods , X-Ray Microtomography/methods , Animals , Drosophila , Humans , Mice , Zebrafish
9.
Int J Dent ; 2017: 5920714, 2017.
Article in English | MEDLINE | ID: mdl-29527226

ABSTRACT

In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

SELECTION OF CITATIONS
SEARCH DETAIL