Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Int ; 156: 106710, 2021 11.
Article in English | MEDLINE | ID: mdl-34144364

ABSTRACT

Accurate measurement and estimation on the trends and spatial distributions of VOCs emissions in China are critical to establishing efficient local or regional pollution control measures, while less is known about the discrepancies on VOCs emissions estimated by previous studies. In this study, two of the estimation approaches including the bottom-up and top-down methods have been reviewed with the data collected from many studies. The approaches demonstrated that the total anthropogenic VOCs emissions in China have been increasing since 1949. The contributions of industrial and solvent use to total VOCs emissions have been increasing since 2000, whereas the contributions of transportation sector have shown a decreasing trend since 2000. The contributions of fuel combustion have also been decreasing since 1950. The gaps of emission estimates for the industry and solvent use were 99.3 ± 22.7% and 81.5 ± 41.8%, respectively, which distributed in much wider ranges than other sources (e.g. 28.9 ± 16.7% for fuel combustion). In comparison to the top-down method, larger variations on the annual VOCs emission estimates were seen using the bottom-up method that comprised different data sources. For the view of spatial pattern, most hot emission estimate spots were concentrated in the eastern China, consistent to their relatively stronger strengths in the industrialization and urbanization. Although the total VOCs emission in China has been continuously increasing during 2008-2016, the VOCs emissions per gross domestic production (GDP) showed a decreasing trend. As for individual compounds, large discrepancy was seen on formaldehyde, with the coefficient of variation (CV) ranged from 37% to 128% over the years. In overall of view, the importance of industrial process and solvent use is increasing. More focuses must be made to these two sources. Emissions of individual compound, particularly those of oxygenated VOCs, were not completely determined and should be better quantified.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Urbanization , Volatile Organic Compounds/analysis
2.
Nanoscale Adv ; 1(12): 4909-4914, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-36133119

ABSTRACT

Being one of the most common forms of energy existing in the ambient environment, acoustic waves have a great potential to be an energy source. However, the effective energy conversion of an acoustic wave is a great challenge due to its low energy density and broad bandwidth. In this work, we developed a new piezoelectric nanogenerator (PENG), which is mainly composed of a piece of piezoelectric nanofiber/polymer composite membrane. As an energy harvester, the PENG can effectively scavenge a broad low-frequency (from 50 Hz to 400 Hz) acoustic energy from the ambient environment, and it can even scavenge a very weak acoustic energy with a minimum pressure of only 0.18 Pa. When a drum was used as an excitation source, the maximum open-circuit voltage and short-circuit current density of the PENG reached 1.8 V and 1.67 mA m-2, respectively. In addition, the PENG had a good stability and its output frequency and amplitude were closely related to the driving sound wave, which made the PENG capable of detecting acoustic signals in the living environment and have the potential to be applied as a self-powered active acoustic detector.

3.
J Biomed Mater Res A ; 103(3): 1141-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25045142

ABSTRACT

Exposure to titanium dioxide nanoparticles (TiO2 NPs) has been demonstrated to decrease learning and memory of animals. However, whether the impacts of these NPs on the recognition function are involved in hippocamal neuron damages is poorly understood. In this study, primary cultured hippocampal neurons from one-day-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 µg/mL TiO2 NPs for 24 h, we investigated cell viability, ultrastructure, and mitochondrial membrane potential (MMP), calcium homeostasis, oxidative stress, antioxidant capacity, apoptotic signaling pathway associated with the primary cultured hippocamal neuron apoptosis. Our findings showed that TiO2 NP treatment resulted in reduction of cell viability, promoted lactate dehydrogenase release, apoptosis, and increased neuron apoptotic rate in a dose-dependent manner. Furthermore, TiO2 NPs led to [Ca(2+)]i elevation, and MMP reduction, up-regulated protein expression of cytochrome c, Bax, caspase-3, glucose-regulated protein 78, C/EBP homologous protein and caspase-12, and down-regulated bcl-2 expression in the primary cultured hippocampal neurons. These findings suggested that hippocampal neuron apoptosis caused by TiO2 NPs may be associated with mitochondria-mediated signal pathway and endoplasmic reticulum-mediated signal pathway.


Subject(s)
Apoptosis/drug effects , Hippocampus/metabolism , Nanoparticles/adverse effects , Neurons/metabolism , Signal Transduction/drug effects , Titanium/toxicity , Animals , Apoptosis Regulatory Proteins/biosynthesis , Cell Survival/drug effects , Cells, Cultured , Hippocampus/pathology , Membrane Potential, Mitochondrial/drug effects , Nanoparticles/chemistry , Neurons/pathology , Rats , Rats, Sprague-Dawley
4.
J Hazard Mater ; 280: 364-71, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25179109

ABSTRACT

The evaluation of toxicological effects of nanoparticulate matter is increasingly important due to their growing occupational use and presence as compounds in consumer products. Numerous studies have shown that exposure to nanosized particles lead to systemic inflammation in experimental animals, but whether long-term exposure to nanosized particles induces atherogenesis is rarely evaluated. In the current study, mice were continuously exposed to TiO2 nanoparticles (NPs) at 1.25, 2.5, or 5mg/kg body weight, administered by nasal instillation for nine consecutive months, and the association between serum parameter changes and atherosclerosis in mice were investigated. The present findings suggested that chronic exposure to TiO2 NPs resulted in atherogenesis coupling with pulmonary inflammation, increased levels of serum triglycerides, glucose, total cholesterol, low-density lipoprotein cholesterol, advanced glycation end products, reactive oxygen species, NAD(P)H oxidases 4, C-reaction protein, E-selectin, endothelin-1, tissue factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and reduced levels of serum high-density lipoprotein cholesterol, nitric oxide and tissue plasminogen activator. Our study suggests an association of long-term exposure to TiO2 NPs with atherosclerosis and pulmonary inflammation. This finding demonstrates the hypothesized role of TiO2 NPs as a risk factor for atherogenesis.


Subject(s)
Atherosclerosis/chemically induced , Biomarkers/blood , Nanoparticles/toxicity , Titanium/toxicity , Animals , Atherosclerosis/blood , Female , Lipids/blood , Lung/drug effects , Lung/immunology , Mice, Inbred ICR , Random Allocation , Titanium/blood
5.
Biol Trace Elem Res ; 159(1-3): 269-77, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24736977

ABSTRACT

The widespread application of lanthanoids (Lns) in manufacturing industries has raised occupational and environmental health concerns about the possible increased health risks to humans exposed to Lns in their working and living environments. Numerous studies have shown that exposures to Ln cause pulmonary injury in animals, but very little is known about the molecular mechanisms of the pulmonary inflammation caused by cerium chloride (CeCl3) exposure. In this study, we evaluated the oxidative stress and molecular mechanism underlying with the pulmonary inflammation associated with chronic lung toxicity in mice treated with nasally instilled CeCl3 for 90 consecutive days. Our findings suggest that significant cerium accumulated in the lung, leading the obvious increase of the lung indices, significant increases in inflammatory cells and levels of lactate dehydrogenase, alkaline phosphate, and total protein, overproduction of reactive oxygen species and peroxidation of lipids, reduced antioxidant capacity, and pulmonary inflammation. CeCl3 exposure also activated nuclear factor κB, increased the expression of tumor necrosis factor α, cyclooxygenase-2, heme oxygenase 1, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 18, interleukin 1ß, and CYP1A1. However, CeCl3 reduced the expression of nuclear factor κB (NF-κB)-inhibiting factor and heat shock protein 70. These findings suggest that the pulmonary inflammation caused by CeCl3 in mice is closely associated with oxidative stress and inflammatory cytokine expression.


Subject(s)
Cerium/toxicity , Lung/drug effects , Lung/metabolism , Animals , Cyclooxygenase 2/metabolism , Cytochrome P-450 CYP1A1/metabolism , Heme Oxygenase-1/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-2/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Male , Mice , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Wistar
6.
PLoS One ; 9(3): e92230, 2014.
Article in English | MEDLINE | ID: mdl-24658543

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) have been used in various medical and industrial areas. However, the impacts of these nanoparticles on neuroinflammation in the brain are poorly understood. In this study, mice were exposed to 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 90 consecutive days, and the TLRs/TNF-α/NF-κB signaling pathway associated with the hippocampal neuroinflammation was investigated. Our findings showed titanium accumulation in the hippocampus, neuroinflammation and impairment of spatial memory in mice following exposure to TiO2 NPs. Furthermore, TiO2 NPs significantly activated the expression of Toll-like receptors (TLR2, TLR4), tumor necrosis factor-α, nucleic IκB kinase, NF-κB-inducible kinase, nucleic factor-κB, NF-κB2(p52), RelA(p65), and significantly suppressed the expression of IκB and interleukin-2. These findings suggest that neuroinflammation may be involved in TiO2 NP-induced alterations of cytokine expression in mouse hippocampus. Therefore, more attention should be focused on the application of TiO2 NPs in the food industry and their long-term exposure effects, especially in the human central nervous system.


Subject(s)
Hippocampus/metabolism , NF-kappa B/metabolism , Titanium/pharmacology , Animals , Cytokines/biosynthesis , Female , Hippocampus/pathology , I-kappa B Kinase/metabolism , I-kappa B Proteins/metabolism , Inflammation/chemically induced , Maze Learning/drug effects , Mice , Motor Activity/drug effects , NF-kappa B p52 Subunit/metabolism , Nanoparticles , Toll-Like Receptor 2/drug effects , Toll-Like Receptor 2/physiology , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/physiology , Toll-Like Receptors/metabolism
7.
Toxicol Sci ; 106(2): 454-63, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18779382

ABSTRACT

Aconitine (ACO), a highly toxic diterpenoid alkaloid, is recognized to have effects on cardiac voltage-gated Na(+) channels. However, it remains unknown whether it has any effects on K(+) currents. The effects of ACO on ion currents in differentiated clonal cardiac (H9c2) cells and in cultured neonatal rat ventricular myocytes were investigated in this study. In H9c2 cells, ACO suppressed ultrarapid-delayed rectifier K(+) current (I(Kur)) in a time- and concentration-dependent fashion. The IC(50) value for ACO-induced inhibition of I(Kur) was 1.4 microM. ACO could accelerate the inactivation of I(Kur) with no change in the activation time constant of this current. Steady-state inactivation curve of I(Kur) during exposure to ACO could be demonstrated. Recovery from block by ACO was fitted by a single-exponential function. The inhibition of I(Kur) by ACO could still be observed in H9c2 cells preincubated with ruthenium red (30 microM). Intracellular dialysis with ACO (30 microM) had no effects on I(Kur). I(Kur) elicited by simulated action potential (AP) waveforms was sensitive to block by ACO. Single-cell Ca(2+) imaging revealed that ACO (10 microM) alone did not affect intracellular Ca(2+) in H9c2 cells. In cultured neonatal rat ventricular myocytes, ACO also blocked I(Kur) and prolonged AP along with appearance of early afterdepolarizations. Multielectrode recordings on neonatal rat ventricular tissues also suggested that ACO-induced electrocardiographic changes could be associated with inhibition of I(Kur). This study provides the evidence that ACO can produce a depressant action on I(Kur) in cardiac myocytes.


Subject(s)
Aconitine/toxicity , Heart Ventricles/drug effects , Potassium Channel Blockers/toxicity , Potassium Channels/drug effects , Animals , Animals, Newborn , Cell Differentiation , Cell Line , Electrodes , Heart Ventricles/cytology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Ruthenium Red/pharmacology
8.
Neuropharmacology ; 54(6): 912-23, 2008 May.
Article in English | MEDLINE | ID: mdl-18336846

ABSTRACT

The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (I K(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of I K(DR) inactivation, although it had no effect on the initial activation phase of I K(DR). It could shift the inactivation curve of I K(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for I K(DR) was also enhanced by ACO. Orphenadrine (30 microM) or methyllycaconitine (30 microM) slightly suppressed I K(DR) without modifying current decay. ACO (10 microM) had an inhibitory effect on voltage-dependent Na+ current (I Na). Under current-clamp recordings, ACO increased the firing and widening of action potentials in these cells. With the aid of the minimal binding scheme, the ACO actions on I K(DR) was quantitatively provided with a dissociation constant of 0.6 microM. A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ACO also blocked I K(DR) in neuroblastoma SH-SY5Y cells. Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on I K(DR) and I Na.


Subject(s)
Aconitine/pharmacology , Delayed Rectifier Potassium Channels/drug effects , Neurons/metabolism , Potassium Channel Blockers , Action Potentials/drug effects , Algorithms , Cell Differentiation/drug effects , Cell Line , Computer Simulation , Data Interpretation, Statistical , Electrophysiology , Humans , Kinetics , Neurons/drug effects , Patch-Clamp Techniques
9.
Life Sci ; 82(1-2): 11-20, 2008 Jan 02.
Article in English | MEDLINE | ID: mdl-18068197

ABSTRACT

Riluzole is known to be of therapeutic use in the management of amyotrophic lateral sclerosis. In this study, we investigated the effects of riluzole on ion currents in cultured differentiated human skeletal muscle cells (dHSkMCs). Western blotting revealed the protein expression of alpha-subunits for both large-conductance Ca2+-activated K+ (BK(Ca)) channel and Na+ channel (Na(v)1.5) in these cells. Riluzole could reduce the frequency of spontaneous beating in dHSkMCs. In whole-cell configuration, riluzole suppressed voltage-gated Na+ current (I(Na)) in a concentration-dependent manner with an IC50 value of 2.3 microM. Riluzole (10 microM) also effectively increased Ca2+-activated K+ current (I(K(Ca))) which could be reversed by iberiotoxin (200 nM) and paxilline (1 microM), but not by apamin (200 nM). In inside-out patches, when applied to the inside of the cell membrane, riluzole (10 microM) increased BK(Ca)-channel activity with a decrease in mean closed time. Simulation studies also unraveled that both decreased conductance of I(Na) and increased conductance of I(K(Ca)) utilized to mimic riluzole actions in skeletal muscle cells could combine to decrease the amplitude of action potentials and increase the repolarization of action potentials. Taken together, inhibition of I(Na) and stimulation of BK(Ca)-channel activity caused by this drug are partly, if not entirely, responsible for its muscle relaxant actions in clinical setting.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Muscle, Skeletal/drug effects , Riluzole/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Action Potentials/drug effects , Cells, Cultured , Computer Simulation , Dose-Response Relationship, Drug , Electrophysiology , Humans , Indoles/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/biosynthesis , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , NAV1.5 Voltage-Gated Sodium Channel , Peptides/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Sodium Channels/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL