Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 472: 134500, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714054

ABSTRACT

Thermal landfill leachate evaporator systems can reduce the volume of leachate by up to 97%, while releasing water vapor and producing residuals (volume-reduced leachate and sludge) that are managed on-site. On-site thermal evaporators offer landfill operators leachate management autonomy without being subject to increasingly stringent wastewater treatment plant requirements. However, little is known about the partitioning of PFAS within these systems, nor the extent to which PFAS may be emitted into the environment via vapor. In this study, feed leachate, residual evaporated leachate, sludge, and condensed vapor were sampled at two active full-scale thermal landfill leachate evaporators and from a laboratory-scale leachate evaporation experiment. Samples were analyzed for 91 PFAS via ultra-high pressure liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Similar trends were observed from Evaporator 1, Evaporator 2, and the laboratory-scale evaporator; ∑PFAS were concentrated in the residual evaporated leachate during evaporation by a factor of 5.3 to 20. All condensed vapors sampled (n = 5) contained PFAS, predominantly 5:3 fluorotelomer carboxylic acid (5:3FTCA), (full-scale vapors 729 - 4087 ng/L PFAS; lab-scale vapor 61.0 ng/L PFAS). For Evaporators 1 and 2, an estimated 9 - 24% and 10%, respectively, of the PFAS mass entering the evaporators in leachate was released with vapor during the days of sample collection. '.

2.
Sci Total Environ ; 928: 172430, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38621546

ABSTRACT

In recent years, soil screening levels have been adopted by regulatory agencies for certain per- and polyfluoroalkyl substances (PFAS) to assess the risk of groundwater contamination through leaching. These soil screening levels, determined using an established equilibrium-based partitioning equation, have high variability among regulatory groups largely attributed to the diverse reported partitioning coefficients in the literature. This variability between reported partitioning coefficients, and subsequently soil screening levels, is due to the complex leaching behavior of PFAS not being predicted well by the standard equilibrium-based model. This has led one regulatory group to require batch leaching to assess risk rather than setting default soil screening levels based on partitioning equations. In this work, we conducted leaching experiments on five field-sampled soils impacted by aqueous film-forming foams (AFFF), following Leaching Environmental Assessment Framework (LEAF) Method 1316 and compared the results to expected leaching utilizing an equilibrium-based partitioning equation commonly employed by regulatory agencies to establish soil screening levels. Our analysis found among the six PFAS detected in the soils, which have regulatory leaching thresholds established, the partitioning values assumed by the U.S. EPA exhibited the highest accuracy in predicting leachate concentrations. These partitioning values predicted actual leaching within a ± 20 % margin of error for approximately 50 % of sample points, highlighting limitations in relying solely on equilibrium-based partitioning values as predictors of leaching behavior. This discrepancy between predicted and actual leaching has implications for site managers and regulatory entities overseeing PFAS-contaminated sites, suggesting that soil screening level determinations for PFAS might need to be revised to account for the unique transport characteristics of PFAS.

3.
Chemosphere ; 333: 138937, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37187368

ABSTRACT

The environmental risks associated with the storage, reuse, and disposal of unencapsulated reclaimed asphalt pavement (RAP) has been previously examined, but because of a lack of standardized column testing protocols and recent interest on emerging constituents with higher toxicity, questions surrounding leaching risks from RAP continue. To address these concerns, RAP from six, discrete stockpiles in Florida was collected and leach tested following the most up-to-date, standard column leaching protocol - United States Environmental Protection Agency (US EPA) Leaching Environmental Assessment Framework (LEAF) Method 1314. Sixteen EPA priority polycyclic aromatic hydrocarbons (PAHs), 23 emerging PAHs, identified through relevance in literature, and heavy metals were investigated. Column testing showed minimal leaching of PAHs; only eight compounds, three priority PAHs and five emerging PAHs, were released at quantifiable concentrations, and where applicable, were below US EPA Regional Screening Levels (RSL). Though emerging PAHs were identified more frequently, in most cases, priority compounds dominated contributions to overall PAH concentration and benzo(a)pyrene (BaP) equivalent toxicity. Except for arsenic, molybdenum, and vanadium in two samples, metals were found below limits of detection (LOD) or below risk thresholds. Arsenic and molybdenum concentrations diminished over time with increased exposure to liquid, but elevated vanadium concentrations persisted in one sample. Further batch testing linked vanadium to the aggregate component of the sample, unlikely to be encountered in typical RAP sources. As demonstrated by generally low constituent mobility observed during testing, the leaching risks associated with the beneficial reuse of RAP are limited, and under typical reuse conditions, factors of dilution and attenuation would likely reduce leached concentrations below relevant risk-based thresholds at a point of compliance. When considering emerging PAHs with higher toxicities, analyses indicated minimal impact to overall leachate toxicity, further suggesting that with proper management, this heavily recycled waste stream is unlikely to pose leaching risk.


Subject(s)
Arsenic , Polycyclic Aromatic Hydrocarbons , Trace Elements , Polycyclic Aromatic Hydrocarbons/analysis , Vanadium/analysis , Arsenic/analysis , Molybdenum/analysis , Environmental Monitoring/methods , Trace Elements/analysis
4.
Chemosphere ; 325: 138307, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36878365

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitously present in our indoor living environments. Dust is thought to accumulate PFAS released indoors and serve as an exposure pathway for humans. Here, we investigated whether spent air conditioning (AC) filters can be exploited as opportunistic samplers of airborne dust for assessing PFAS burden in indoor environments. Used AC filters from campus facilities (n = 19) and homes (n = 11) were analyzed for 92 PFAS via targeted ultra-high pressure liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). While 27 PFAS were measured (in at least one filter), the predominant species were polyfluorinated dialkylated phosphate esters (diPAPs), with the sum of 6:2-, 8:2-, and 6:2/8:2diPAPs accounting for approximately 95 and 98 percent of ∑27PFAS in campus and household filters, respectively. Exploratory screening of a subset of the filters revealed the presence of additional species of mono-, di-, and tri-PAPs. Considering the constant human exposure to dust indoors and the potential of PAPs to degrade into terminal species with well-established toxicological risks, assessing dust for these precursor PFAS warrants further investigation with respect to both human health and PFAS loading to landfills from this under studied waste stream.


Subject(s)
Air Filters , Air Pollution, Indoor , Fluorocarbons , Humans , Tandem Mass Spectrometry/methods , Dust/analysis , Air Conditioning , Fluorocarbons/analysis , Air Pollution, Indoor/analysis , Organophosphates/analysis , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL