Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1364545, 2024.
Article in English | MEDLINE | ID: mdl-38868299

ABSTRACT

Introduction: Gestational diabetes mellitus (GDM) is a form of gestational diabetes mellitus characterized by insulin resistance and abnormal function of pancreatic beta cells. In recent years, genomic association studies have revealed risk and susceptibility genes associated with genetic susceptibility to GDM. However, genetic predisposition cannot explain the rising global incidence of GDM, which may be related to the increased influence of environmental factors, especially the gut microbiome. Studies have shown that gut microbiota is closely related to the occurrence and development of GDM. This paper reviews the relationship between gut microbiota and the pathological mechanism of GDM, in order to better understand the role of gut microbiota in GDM, and to provide a theoretical basis for clinical application of gut microbiota in the treatment of related diseases. Methods: The current research results on the interaction between GDM and gut microbiota were collected and analyzed through literature review. Keywords such as "GDM", "gut microbiota" and "insulin resistance" were used for literature search, and the methodology, findings and potential impact on the pathophysiology of GDM were systematically evaluated. Results: It was found that the composition and diversity of gut microbiota were significantly associated with the occurrence and development of GDM. Specifically, the abundance of certain gut bacteria is associated with an increased risk of GDM, while other changes in the microbiome may be associated with improved insulin sensitivity. In addition, alterations in the gut microbiota may affect blood glucose control through a variety of mechanisms, including the production of short-chain fatty acids, activation of inflammatory pathways, and metabolism of the B vitamin group. Discussion: The results of this paper highlight the importance of gut microbiota in the pathogenesis of GDM. The regulation of the gut microbiota may provide new directions for the treatment of GDM, including improving insulin sensitivity and blood sugar control through the use of probiotics and prebiotics. However, more research is needed to confirm the generality and exact mechanisms of these findings and to explore potential clinical applications of the gut microbiota in the management of gestational diabetes. In addition, future studies should consider the interaction between environmental and genetic factors and how together they affect the risk of GDM.


Subject(s)
Diabetes, Gestational , Gastrointestinal Microbiome , Insulin Resistance , Diabetes, Gestational/microbiology , Humans , Pregnancy , Female , Probiotics , Bacteria/classification , Bacteria/genetics
2.
Front Pharmacol ; 15: 1370594, 2024.
Article in English | MEDLINE | ID: mdl-38515845

ABSTRACT

Background: Diabetes affects millions of people worldwide annually, and several methods, including medications, are used for its management; glucagon-like peptide-1 receptor agonists (GLP-1RAs) are one such class of medications. The efficacy and safety of GLP-1RAs in treating type 2 diabetes mellitus (T2DM) have been assessed and have been shown to significantly improve time in range (TIR) in several clinical trials. However, presently, there is a lack of real-world evidence on the efficacy of GLP-1RAs in improving TIR. To address this, we investigated the effect of GLP-1RA-based treatment strategies on TIR among patients with T2DM in real-world clinical practice. Methods: This multicenter, retrospective, real-world study included patients with T2DM who had previously used a continuous glucose monitoring (CGM) system and received treatment with GLP-1RAs or oral antidiabetic drugs (OADs). Patients who received OADs served as controls and were matched in a 1:1 ratio to their GLP-1RA counterparts by propensity score matching. The primary endpoint was the TIR after 3-6 months of treatment. Results: According to propensity score matching, 202 patients were equally divided between the GLP-1RA and OAD groups. After 3-6 months of treatment, the TIR values for the GLP-1RA and OAD groups were 76.0% and 65.7%, respectively (p < 0.001). The GLP-1RA group displayed significantly lower time above range (TAR) and mean glucose values than the OAD group (p < 0.001). Subgroup analysis revealed that, compared with the administration of liraglutide, the administration of semaglutide and polyethylene glycol loxenatide (PEG-Loxe) significantly improved TIR over 3-6 months of treatment (p < 0.05). Conclusion: These real-world findings indicate that GLP-1RA-based treatment strategies could be superior to oral treatment strategies for improving TIR among patients with T2DM and that once-weekly GLP-1RA may be more effective than a once-daily GLP-1RA. Clinical trial registration: http://www.chinadrugtrials.org.cn/index.html, identifier number ChiCTR2300073697.

3.
Healthcare (Basel) ; 11(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37998412

ABSTRACT

The objective of this study was to understand dynamic global and regional lung cancer fatality trends and provide a foundation for effective global lung cancer prevention and treatment strategies. Data from 1990 to 2019 were collected from the Global Burden Disease (GBD) database and statistical analysis was conducted using Excel 2010. Standardization was based on the GBD's world population structure, and the Average Annual Percentage Change (AAPC) was calculated using Joinpoint 4.8.0.1 software. Bayesian age-period-cohort analysis (BAPC) predicted global lung cancer mortality from 2020 to 2030. In 2019, worldwide lung cancer deaths reached 2,042,600, a 91.75% increase from 1990 (1,065,100). The standardized age-specific death rate in 2019 was 25.18 per 100,000. Males had a rate of 37.38 while females had 14.99. Men saw a decreasing trend while women experienced an increase. High- and medium-high-SDI regions had declining rates (-0.3 and -0.8 AAPCs) whereas middle-, low-, and low-middle-SDI regions had increased mortality rates (AAPC = 0.1, AAPC = 0.37, AAPC = 0.13). Several regions, including Oceania, South Asia, East Asia, Western Sub-Saharan Africa, Southeast Asia, and Eastern Sub-Saharan Africa, witnessed rising global lung cancer mortality rates (p < 0.01). The global standardized mortality rate for lung cancer is expected to decrease from 2020 to 2030, but predictions indicate increasing female mortality and decreasing male mortality. Despite overall declines, rising female mortality remains a concern. Effective measures are essential to reduce mortality rates and improve patients' quality of life in the global fight against lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...