Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
JCI Insight ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713520

ABSTRACT

Clinical trials delivering high doses of adeno-associated viruses (AAVs) expressing truncated dystrophin molecules (micro-dystrophins) are underway for individuals with Duchenne muscular dystrophy (DMD). We examined the efficiency and efficacy of this strategy with four micro-dystrophin constructs (three in clinical trials and a variant of the largest clinical construct), in a severe mouse model of DMD, using doses of AAV comparable to those used in the clinical trials. We achieved high levels of micro-dystrophin expression in striated muscle with cardiac expression ~10 fold higher than that observed in skeletal muscle. Significant, albeit incomplete, correction of the skeletal muscle disease was observed. Surprisingly, a lethal acceleration of cardiac disease progression occurred with two of the micro-dystrophins. The detrimental impact on the heart appears to be caused by the high levels of micro-dystrophin resulting in variable competition (dependent on the design of the micro-dystrophin) between micro-dystrophin and utrophin at the cardiomyocyte membrane. There may also be a contribution from an overloading of protein degradation. The significance of these observations for patients currently being treated with AAV-micro-dystrophin therapies is unclear since the levels of expression being achieved in the DMD hearts are unknown. However, it suggests that micro-dystrophin treatments need to avoid excessively high levels of expression in the heart and cardiac function should be carefully monitored in these patients.

2.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343080

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Heart Diseases , Animals , Child , Humans , Mice , Arrhythmias, Cardiac , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Pyrazoles/pharmacology
3.
Life Sci ; 324: 121712, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37100378

ABSTRACT

AIMS: Cadmium exposure is a worldwide problem that has been linked to the development of cardiovascular disease. This study aimed to elucidate mechanistic details of chronic cadmium exposure on the structure and function of the heart. MAIN METHODS: Male and female mice were exposed to cadmium chloride (CdCl2) via drinking water for eight weeks. Serial echocardiography and blood pressure measurements were performed. Markers of hypertrophy and fibrosis were assessed, along with molecular targets of Ca2+-handling. KEY FINDINGS: Males exhibited a significant reduction in left ventricular ejection fraction and fractional shortening with CdCl2 exposure, along with increased ventricular volume at end-systole, and decreased interventricular septal thickness at end-systole. Interestingly, no changes were detected in females. Experiments in isolated cardiomyocytes revealed that CdCl2-induced contractile dysfunction was also present at the cellular level, showing decreased Ca2+ transient and sarcomere shortening amplitude with CdCl2 exposure. Further mechanistic investigation uncovered a decrease in sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein expression and phosphorylated phospholamban levels in male hearts with CdCl2 exposure. SIGNIFICANCE: The findings of our novel study provide important insight into how cadmium exposure may act as a sex-specific driver of cardiovascular disease, and further underscore the importance of reducing human exposure to cadmium.


Subject(s)
Cardiovascular Diseases , Ventricular Function, Left , Humans , Mice , Male , Female , Animals , Cadmium/toxicity , Cadmium/metabolism , Stroke Volume , Cardiovascular Diseases/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium/metabolism
4.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36099033

ABSTRACT

Gene mutations causing loss of dystrophin result in the severe muscle disease known as Duchenne muscular dystrophy (DMD). Despite efforts at genetic repair, DMD therapy remains largely palliative. Loss of dystrophin destabilizes the sarcolemmal membrane, inducing mechanosensitive cation channels to increase calcium entry and promote cell damage and, eventually, muscle dysfunction. One putative channel is transient receptor potential canonical 6 (TRPC6); we have shown that TRPC6 contributed to abnormal force and calcium stress-responses in cardiomyocytes from mice lacking dystrophin that were haplodeficient for utrophin (mdx/utrn+/- [HET] mice). Here, we show in both the HET mouse and the far more severe homozygous mdx/utrn-/- mouse that TRPC6 gene deletion or its selective pharmacologic inhibition (by BI 749327) prolonged survival 2- to 3-fold, improving skeletal and cardiac muscle and bone defects. Gene pathways reduced by BI 749327 treatment most prominently regulated fat metabolism and TGF-ß1 signaling. These results support the testing of TRPC6 inhibitors in human trials for other diseases as a novel DMD therapy.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Calcium/metabolism , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Humans , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Myocardium/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , Transforming Growth Factor beta1/metabolism , Utrophin/genetics , Utrophin/metabolism
5.
Nat Commun ; 13(1): 2940, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618700

ABSTRACT

Skeletal muscle can repair and regenerate due to resident stem cells known as satellite cells. The muscular dystrophies are progressive muscle wasting diseases underscored by chronic muscle damage that is continually repaired by satellite cell-driven regeneration. Here we generate a genetic strategy to mediate satellite cell ablation in dystrophic mouse models to investigate how satellite cells impact disease trajectory. Unexpectedly, we observe that depletion of satellite cells reduces dystrophic disease features, with improved histopathology, enhanced sarcolemmal stability and augmented muscle performance. Mechanistically, we demonstrate that satellite cells initiate expression of the myogenic transcription factor MyoD, which then induces re-expression of fetal genes in the myofibers that destabilize the sarcolemma. Indeed, MyoD re-expression in wildtype adult skeletal muscle reduces membrane stability and promotes histopathology, while MyoD inhibition in a mouse model of muscular dystrophy improved membrane stability. Taken together these observations suggest that satellite cell activation and the fetal gene program is maladaptive in chronic dystrophic skeletal muscle.


Subject(s)
Muscular Dystrophies , Satellite Cells, Skeletal Muscle , Animals , Disease Models, Animal , Mice , Muscle Development , Muscle, Skeletal/metabolism , Muscular Dystrophies/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Stem Cells
6.
PLoS Comput Biol ; 17(9): e1009305, 2021 09.
Article in English | MEDLINE | ID: mdl-34534204

ABSTRACT

The immaturity of pluripotent stem cell (PSC)-derived tissues has emerged as a universal problem for their biomedical applications. While efforts have been made to generate adult-like cells from PSCs, direct benchmarking of PSC-derived tissues against in vivo development has not been established. Thus, maturation status is often assessed on an ad-hoc basis. Single cell RNA-sequencing (scRNA-seq) offers a promising solution, though cross-study comparison is limited by dataset-specific batch effects. Here, we developed a novel approach to quantify PSC-derived cardiomyocyte (CM) maturation through transcriptomic entropy. Transcriptomic entropy is robust across datasets regardless of differences in isolation protocols, library preparation, and other potential batch effects. With this new model, we analyzed over 45 scRNA-seq datasets and over 52,000 CMs, and established a cross-study, cross-species CM maturation reference. This reference enabled us to directly compare PSC-CMs with the in vivo developmental trajectory and thereby to quantify PSC-CM maturation status. We further found that our entropy-based approach can be used for other cell types, including pancreatic beta cells and hepatocytes. Our study presents a biologically relevant and interpretable metric for quantifying PSC-derived tissue maturation, and is extensible to numerous tissue engineering contexts.


Subject(s)
Benchmarking , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Single-Cell Analysis/methods , Transcriptome , Gene Expression , Hepatocytes/cytology , Humans , Insulin-Secreting Cells/cytology , Sequence Analysis, RNA/methods , Tissue Engineering
7.
Skelet Muscle ; 11(1): 13, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001262

ABSTRACT

BACKGROUND: Skeletal muscle myofibers can be separated into functionally distinct cell types that differ in gene and protein expression. Current single cell expression data is generally based upon single nucleus RNA, rather than whole myofiber material. We examined if a whole-cell flow sorting approach could be applied to perform single cell RNA-seq (scRNA-seq) in a single muscle type. METHODS: We performed deep, whole cell, scRNA-seq on intact and fragmented skeletal myofibers from the mouse fast-twitch flexor digitorum brevis muscle utilizing a flow-gated method of large cell isolation. We performed deep sequencing of 763 intact and fragmented myofibers. RESULTS: Quality control metrics across the different gates indicated only 171 of these cells were optimal, with a median read count of 239,252 and an average of 12,098 transcripts per cell. scRNA-seq identified three clusters of myofibers (a slow/fast 2A cluster and two fast 2X clusters). Comparison to a public skeletal nuclear RNA-seq dataset demonstrated a diversity in transcript abundance by method. RISH validated multiple genes across fast and slow twitch skeletal muscle types. CONCLUSION: This study introduces and validates a method to isolate intact skeletal muscle myofibers to generate deep expression patterns and expands the known repertoire of fiber-type-specific genes.


Subject(s)
Muscle, Skeletal , Muscular Diseases , Animals , Cell Separation , Foot , Mice , Sequence Analysis, RNA
8.
iScience ; 24(4): 102246, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33796838

ABSTRACT

Heterozygous gain-of-function (GOF) mutations of hypoxia-inducible factor 2α (HIF2A), a key hypoxia-sensing regulator, are associated with erythrocytosis, thrombosis, and vascular complications that account for morbidity and mortality of patients. We demonstrated that the vascular pathology of HIF2A GOF mutations is independent of erythrocytosis. We generated HIF2A GOF-induced pluripotent stem cells (iPSCs) and differentiated them into endothelial cells (ECs) and smooth muscle cells (SMCs). Unexpectedly, HIF2A-SMCs, but not HIF2A-ECs, were phenotypically aberrant, more contractile, stiffer, and overexpressed endothelin 1 (EDN1), myosin heavy chain, elastin, and fibrillin. EDN1 inhibition and knockdown of EDN1-receptors both reduced HIF2-SMC stiffness. Hif2A GOF heterozygous mice displayed pulmonary hypertension, had SMCs with more disorganized stress fibers and higher stiffness in their pulmonary arterial smooth muscle cells, and had more deformable pulmonary arteries compared with wild-type mice. Our findings suggest that targeting these vascular aberrations could benefit patients with HIF2A GOF and conditions of augmented hypoxia signaling.

9.
J Proteome Res ; 20(1): 888-894, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33251806

ABSTRACT

Skeletal muscle myofibers have differential protein expression resulting in functionally distinct slow- and fast-twitch types. While certain protein classes are well-characterized, the depth of all proteins involved in this process is unknown. We utilized the Human Protein Atlas (HPA) and the HPASubC tool to classify mosaic expression patterns of staining across 49,600 unique tissue microarray (TMA) images using a visual proteomic approach. We identified 2164 proteins with potential mosaic expression, of which 1605 were categorized as "likely" or "real." This list included both well-known fiber-type-specific and novel proteins. A comparison of the 1605 mosaic proteins with a mass spectrometry (MS)-derived proteomic dataset of single human muscle fibers led to the assignment of 111 proteins to fiber types. We additionally used a multiplexed immunohistochemistry approach, a multiplexed RNA-ISH approach, and STRING v11 to further assign or suggest fiber types of newly characterized mosaic proteins. This visual proteomic analysis of mature skeletal muscle myofibers greatly expands the known repertoire of twitch-type-specific proteins.


Subject(s)
Muscle Fibers, Slow-Twitch , Muscular Diseases , Humans , Muscle Fibers, Fast-Twitch , Muscle, Skeletal , Proteomics
11.
Circ Res ; 127(4): 522-533, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32393148

ABSTRACT

RATIONALE: Stimulated PKG1α (protein kinase G-1α) phosphorylates TSC2 (tuberous sclerosis complex 2) at serine 1365, potently suppressing mTORC1 (mechanistic [mammalian] target of rapamycin complex 1) activation by neurohormonal and hemodynamic stress. This reduces pathological hypertrophy and dysfunction and increases autophagy. PKG1α oxidation at cysteine-42 is also induced by these stressors, which blunts its cardioprotective effects. OBJECTIVE: We tested the dependence of mTORC1 activation on PKG1α C42 oxidation and its capacity to suppress such activation by soluble GC-1 (guanylyl cyclase 1) activation. METHODS AND RESULTS: Cardiomyocytes expressing wild-type (WT) PKG1α (PKG1αWT) or cysteine-42 to serine mutation redox-dead (PKG1αCS/CS) were exposed to ET-1 (endothelin 1). Cells expressing PKG1αWT exhibited substantial mTORC1 activation (p70 S6K [p70 S6 kinase], 4EBP1 [elF4E binding protein-1], and Ulk1 [Unc-51-like kinase 1] phosphorylation), reduced autophagy/autophagic flux, and abnormal protein aggregation; all were markedly reversed by PKG1αCS/CS expression. Mice with global knock-in of PKG1αCS/CS subjected to pressure overload (PO) also displayed markedly reduced mTORC1 activation, protein aggregation, hypertrophy, and ventricular dysfunction versus PO in PKG1αWT mice. Cardioprotection against PO was equalized between groups by co-treatment with the mTORC1 inhibitor everolimus. TSC2-S1365 phosphorylation increased in PKG1αCS/CS more than PKG1αWT myocardium following PO. TSC2S1365A/S1365A (TSC2 S1365 phospho-null, created by a serine to alanine mutation) knock-in mice lack TSC2 phosphorylation by PKG1α, and when genetically crossed with PKG1αCS/CS mice, protection against PO-induced mTORC1 activation, cardiodepression, and mortality in PKG1αCS/CS mice was lost. Direct stimulation of GC-1 (BAY-602770) offset disparate mTORC1 activation between PKG1αWT and PKG1αCS/CS after PO and blocked ET-1 stimulated mTORC1 in TSC2S1365A-expressing myocytes. CONCLUSIONS: Oxidation of PKG1α at C42 reduces its phosphorylation of TSC2, resulting in amplified PO-stimulated mTORC1 activity and associated hypertrophy, dysfunction, and depressed autophagy. This is ameliorated by direct GC-1 stimulation.


Subject(s)
Cardiomegaly/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Guanylate Cyclase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Myocytes, Cardiac/metabolism , Animals , Aorta , Autophagy/physiology , Benzoates/metabolism , Biphenyl Compounds/metabolism , Constriction, Pathologic , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cysteine/metabolism , Endothelin-1/pharmacology , Enzyme Activation , Everolimus/pharmacology , Gene Knock-In Techniques , Hydrocarbons, Fluorinated/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Oxidation-Reduction , Oxidative Stress , Phosphorylation , Pressure , Proteostasis , Rats , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
12.
Circ Heart Fail ; 12(2): e005655, 2019 02.
Article in English | MEDLINE | ID: mdl-30764638

ABSTRACT

BACKGROUND: The mouse is the most widely used mammal in experimental biology. Although many clinically relevant in vivo cardiac stressors are used, one that has eluded translation is long-term cardiac pacing. Here, we present the first method to chronically simulate and simultaneously record cardiac electrical activity in conscious mobile mice. We then apply it to study right ventricular pacing induced electromechanical dyssynchrony and its reversal (resynchronization). METHODS AND RESULTS: The method includes a custom implantable bipolar stimulation and recording lead and flexible external conduit and electrical micro-commutator linked to a pulse generator/recorder. This achieved continuous pacing for at least 1 month in 77% of implants. Mice were then subjected to cardiac ischemia/reperfusion injury to depress heart function, followed by 4 weeks pacing at the right ventricle (dyssynchrony), right atrium (synchrony), or for 2 weeks right ventricle and then 2 weeks normal sinus (resynchronization). Right ventricular pacing-induced dyssynchrony substantially reduced heart and myocyte function compared with the other groups, increased gene expression heterogeneity (>10 fold) comparing septum to lateral walls, and enhanced growth and metabolic kinase activity in the late-contracting lateral wall. This was ameliorated by restoring contractile synchronization. CONCLUSIONS: The new method to chronically pace conscious mice yields stable atrial and ventricular capture and a means to dissect basic mechanisms of electromechanical physiology and therapy. The data on dyssynchrony and resynchronization in ischemia/reperfusion hearts is the most comprehensive to date in ischemic heart disease, and its similarities to nonischemic canine results support the translational utility of the mouse.


Subject(s)
Atrial Function, Right , Cardiac Pacing, Artificial , Cardiac Resynchronization Therapy , Heart Failure/etiology , Myocardial Reperfusion Injury/complications , Ventricular Function, Right , Animals , Disease Models, Animal , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/therapy , Heart Rate , Mice, Inbred C57BL , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Pacemaker, Artificial , Protein Kinases/metabolism , Recovery of Function , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...