Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(12): 5383-5393, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478982

ABSTRACT

Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.


Subject(s)
Dyslipidemias , Exposome , Hypertension , Humans , Bayes Theorem , Obesity/epidemiology , Hair , Environmental Exposure
2.
J Hazard Mater ; 461: 132637, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37788552

ABSTRACT

Obesity, diabetes, hypertension and dyslipidemia are well-established risk factors for cardiovascular diseases (CVDs), and have been associated with exposure to persistent organic pollutants. However, studies have been lacking as regards effects of non-persistent pesticides on CVD risk factors. Here, we investigated whether background chronic exposure to polychlorinated biphenyls (PCBs) and multiclass pesticides were associated with the prevalence of these CVD risk factors in 502 Belgian and 487 Luxembourgish adults aged 18-69 years from the Nutrition, environment and cardiovascular health (NESCAV) study 2007-2013. We used hair analysis to evaluate the chronic internal exposure to three PCBs, seven organochlorine pesticides (OCs) and 18 non-persistent pesticides. We found positive associations of obesity with hexachlorobenzene (HCB), ß-hexachlorocyclohexane (ß-HCH) and chlorpyrifos, diabetes with pentachlorophenol (PCP), fipronil and fipronil sulfone, hypertension with PCB180 and chlorpyrifos, and dyslipidemia with diflufenican and oxadiazon, among others. However, we also found some inverse associations, such as obesity with PCP, diabetes with γ-HCH, hypertension with diflufenican, and dyslipidemia with chlorpyrifos. These results add to the existing evidence that OC exposure may contribute to the development of CVDs. Additionally, the present study revealed associations between CVD risk factors and chronic environmental exposure to currently used pesticides such as organophosphorus and pyrethroid pesticides.


Subject(s)
Cardiovascular Diseases , Chlorpyrifos , Diabetes Mellitus , Dyslipidemias , Environmental Pollutants , Hydrocarbons, Chlorinated , Hypertension , Pentachlorophenol , Pesticides , Polychlorinated Biphenyls , Adult , Humans , Polychlorinated Biphenyls/analysis , Pesticides/toxicity , Pesticides/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Hypertension/chemically induced , Hypertension/epidemiology , Diabetes Mellitus/epidemiology , Obesity/chemically induced , Obesity/epidemiology , Dyslipidemias/chemically induced , Dyslipidemias/epidemiology , Hair/chemistry
3.
Oncol Rep ; 37(3): 1786-1792, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28098885

ABSTRACT

Lung adenocarcinoma is the most common type of lung cancer and found in both smokers and non-smokers, but the treatment of lung cancer is limited. ITR-284 has been shown to be a potent carboxamide-derived anticancer agent and to induce apoptosis in leukemia and colon cancer cells. However, little is known whether ITR-284 has anticancer activity in human lung adenocarcinoma cells through induction of apoptosis and suppression of migration in vitro. We showed that ITR-284 inhibited human lung cancer A549 cells using the thiazolyl blue tetrazolium bromide (MTT) assay and evoked apoptosis via the cell cycle distribution at S phase arrest. After treatment with 20 nM ITR-284 for 24 h, apoptotic cells were induced and detected by Annexin V-FITC/PI staining. The production of reactive oxygen species (ROS) was dose-dependently increased in A549 cells caused by ITR-284. The results from immunoblotting analysis showed an elevation of protein levels of p53 and phosphorylation of p53 in A549 cells prior to ITR-284 exposure. Additionally, apoptosis-associated proteins such as Bax, cleaved caspase-3 and cleaved PARP were upregulated after ITR-284 treatment. By wound healing assay, low concentrations (1-5 nM) of ITR-284 exerted a greater effect on inhibition of A549 cell migration. The protein levels of E-cadherin and vimentin, which are the epithelial-mesenchymal transition (EMT) markers, were modulated in ITR-284-treated cells assessed by western blot analysis. Taken together, our data suggest that ITR-284 may be an effective anticancer agent for treating lung adenocarcinoma.


Subject(s)
Adenocarcinoma/pathology , Apoptosis/drug effects , Cell Movement/drug effects , Lung Neoplasms/pathology , Thiophenes/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Blotting, Western , Cell Cycle/drug effects , Cell Proliferation/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
4.
BMC Cell Biol ; 10: 91, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20017961

ABSTRACT

BACKGROUND: The multifunctional protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine protein phosphatase composed of a scaffolding, catalytic and regulatory subunits. By modifying various downstream signal transducers, the aberrant expression of the brain-targeted regulatory subunit PPP2R2B is associated with the onset of a panel of neuronal disorders. The alternatively splicing of PPP2R2B encodes two regulatory subunit isoforms that determine cellular distribution of the neuron-specific holoenzyme to mitochondria (Bbeta2) and cytoplasm (Bbeta1), respectively. RESULTS: Human neuroblastoma cells were transfected with PPP2R2B constructs encoding the complete sequences of Bbeta2 and Bbeta1, respectively. The colonies with antibiotic resistance were selected as stable cell lines. Both ectopic Bbeta1 and Bbeta2 clones exhibited characteristics of autophagy. To test how cells respond to reactive oxygen species generators, the cells were treated with either hydrogen peroxide or t-butyl hydroperoxide and Bbeta2 clones induced cell death. Suppression of autophagy using either RNA interference of the essential autophagy gene or pharmacological inhibitor rescued cell death caused by oxidative stress. CONCLUSIONS: Cells with ectopically expressed mitochondria-targeted regulatory subunit PPP2R2B of the holoenzyme PP2A were shown predisposed to autophagy and oxidative stress induced cell death that is related to apoptosis. The results promised a model for studying the mechanism and function of aberrant PPP2R2B expression in neuronal cells. The work provided a new target for understanding and prevention of neuropathogenesis.


Subject(s)
Autophagy , Mitochondria/enzymology , Nerve Tissue Proteins/metabolism , Neuroblastoma/physiopathology , Oxidative Stress , Protein Phosphatase 2/metabolism , Cell Line, Tumor , Humans , Mitochondria/genetics , Nerve Tissue Proteins/genetics , Neuroblastoma/enzymology , Neuroblastoma/genetics , Protein Phosphatase 2/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...