Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793569

ABSTRACT

Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future.


Subject(s)
Nicotiana , Plant Diseases , Potyvirus , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Plant Diseases/prevention & control , Potyvirus/genetics , Potyvirus/physiology , Nicotiana/virology , Crops, Agricultural/virology , Disease Resistance , Genome, Viral , Chenopodium quinoa/virology , Mutation , Plant Leaves/virology , Taiwan , Mutagenesis
2.
Plant Methods ; 18(1): 143, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550551

ABSTRACT

BACKGROUND: In June 2020, severe symptoms of leaf mosaic and fruit malformation were observed on greenhouse-grown cucumber plants in Xizhou Township of Changhua County, Taiwan. An unknown virus, designated CX-2, was isolated from a diseased cucumber sample by single lesion isolation on Chenopodium quinoa leaves. Identification of CX-2 was performed. Moreover, the incidence of cucumber viruses in Taiwan was also investigated. METHODS: Transmission electron microscopy was performed to examine virion morphology. The portable MinION sequencer released by Oxford Nanopore Technologies was used to detect viral sequences in dsRNA of CX-2-infected leaf tissue. The whole genome sequence of CX-2 was completed by Sanger sequencing and analyzed. Reverse transcription-polymerase chain reaction (RT-PCR) with species-specific primers and indirect enzyme-linked immunosorbent assay (ELISA) with anti-coat protein antisera were developed for virus detection in the field [see Additional file 1]. RESULTS: Icosahedral particles about 30 nm in diameter were observed in the crud leaf sap of CX-2-infected C. quinoa plant. The complete genome sequence of CX-2 was determined as 4577 nt long and shared 97.0-97.2% of nucleotide identity with that of two cucumber Bulgarian latent virus (CBLV) isolates in Iran and Bulgaria. Therefore, CX-2 was renamed CBLV-TW. In 2020-2022 field surveys, melon yellow spot virus (MYSV) had the highest detection rate of 74.7%, followed by cucurbit chlorotic yellows virus (CCYV) (32.0%), papaya ringspot virus virus watermelon type (PRSV-W) (10.7%), squash leaf curl Philippines virus (SLCuPV) (9.3%), CBLV (8.0%) and watermelon silver mottle virus (WSMoV) (4.0%). Co-infection of CBLV and MYSV could be detected in field cucumbers. CONCLUSION: The emerging CBLV-TW was identified by nanopore sequencing. Whole genome sequence analysis revealed that CBLV-TW is closely related, but phylogenetically distinct, to two known CBLV isolates in Bulgaria and Iran. Detection methods including RT-PCR and indirect ELISA have been developed to detect CBLV and to investigate cucumber viruses in central Taiwan. The 2020-2022 field survey results showed that MYSV and CCYV were the main threats to cucumbers, with CBLV, SLCuPV and WSMoV were occasionally occurring.

3.
Viruses ; 14(11)2022 11 16.
Article in English | MEDLINE | ID: mdl-36423147

ABSTRACT

Rose (Rosa spp.), especially R. hybrida, is one of the most popular ornamental plants in the world and the third largest cut flower crop in Taiwan. Rose mosaic disease (RMD), showing mosaic, line patterns and ringspots on leaves, is a common rose disease caused by the complex infection of various viruses. Due to pests and diseases, the rose planting area in Taiwan has been decreasing since 2008; however, no rose virus disease has been reported in the past five decades. In the spring of 2020, rose samples showing RMD-like symptoms were observed at an organic farm in Chiayi, central Taiwan. The virome in the farm was analyzed by RNA-seq. Rose genomic sequences were filtered from the obtained reads. The remaining reads were de novo assembled to generate 294 contigs, 50 of which were annotated as viral sequences corresponding to 10 viruses. Through reverse transcription-polymerase chain reaction validation, a total of seven viruses were detected, including six known rose viruses, namely apple mosaic virus, prunus necrotic ringspot virus, rose partitivirus, apple stem grooving virus, rose spring dwarf-associated virus and rose cryptic virus 1, and a novel ilarvirus. After completing the whole genome sequencing and sequence analysis, the unknown ilarvirus was demonstrated as a putative new species, tentatively named rose ilarvirus 2. This is the first report of the rose virus disease in Taiwan.


Subject(s)
Ilarvirus , Ilarvirus/genetics , Virome , Taiwan , RNA, Viral/genetics , Cluster Analysis
4.
Arch Virol ; 167(6): 1495-1498, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35482088

ABSTRACT

In April 2011, a virus was isolated by single-lesion isolation on Chenopodium quinoa leaves from an amaryllis plant with chlorotic ringspots in a private garden in Changhua County, Taiwan. An Illumina MiSeq sequencing system was used to determine the genomic nucleotide (nt) sequence of the virus. A de novo-assembled contig with 9377 nt, containing an open reading frame encoding a putative potyviral polyprotein, was annotated as the potyvirus Amazon lily mosaic virus (ALiMV), sharing 95.5% nt sequence identity with a partial genomic sequence of ALiMV available in the GenBank database. Therefore, the amaryllis virus was designated as ALiMV-TW. Through 5´ and 3´ rapid amplification of cDNA ends (RACE), the complete 9618-nt genome sequence of ALiMV-TW was determined. Sequence comparisons indicated that the genome and polyprotein of ALiMV-TW share 52.3-65.1% nt and 30.1-64.2% aa sequence identity, respectively, with those of other potyviruses. This is the first report of a complete genome sequence of ALiMV.


Subject(s)
Amaryllidaceae , Lilium , Potyvirus , Genome, Viral , Phylogeny , Polyproteins/genetics , Potyvirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...