Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(2): e2302268, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37748773

ABSTRACT

Combination immunotherapy has emerged as a promising strategy to address the challenges associated with immune checkpoint inhibitor (ICI) therapy in breast cancer. The efficacy of combination immunotherapy hinges upon the intricate and dynamic nature of the tumor microenvironment (TME), characterized by cellular heterogeneity and molecular gradients. However, current methodologies for drug screening often fail to accurately replicate these complex conditions, resulting in limited predictive capacity for treatment outcomes. Here, a tumor-microenvironment-on-chip (TMoC), integrating a circulation system and ex vivo tissue culture with physiological oxygen and nutrient gradients, is described. This platform enables spatial infiltration of cytotoxic CD8+ T cells and their targeted attack on the tumor, while preserving the high complexity and heterogeneity of the TME. The TMoC is employed to assess the synergistic effect of five targeted therapy drugs and five chemotherapy drugs in combination with immunotherapy, demonstrating strong concordance between chip and animal model responses. The TMoC holds significant potential for advancing drug development and guiding clinical decision-making, as it offers valuable insights into the complex dynamics of the TME.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Tumor Microenvironment , Immunotherapy/methods , Neoplasms/drug therapy , Treatment Outcome
2.
Toxicol Appl Pharmacol ; 259(2): 219-26, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22245593

ABSTRACT

2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1 appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Leukemia/drug therapy , Microtubules/metabolism , Mitosis/drug effects , Naphthyridines/pharmacology , Aurora Kinase B , Aurora Kinases , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/metabolism , Caspases/metabolism , Cell Cycle Checkpoints/physiology , Cell Survival/drug effects , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/metabolism , Cyclin B1/antagonists & inhibitors , Cyclin B1/metabolism , Flow Cytometry , HL-60 Cells , Humans , Inhibitory Concentration 50 , Leukemia/metabolism , Leukemia/pathology , Mitosis/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...