Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 16: 4763-4776, 2023.
Article in English | MEDLINE | ID: mdl-37881652

ABSTRACT

Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.

2.
Biomed Pharmacother ; 157: 114011, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36410123

ABSTRACT

Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Humans , Mesenchymal Stem Cell Transplantation/methods , Spinal Cord Injuries/therapy , Mesenchymal Stem Cells/physiology , Recovery of Function , Spinal Cord
3.
Xenobiotica ; 45(4): 279-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25350237

ABSTRACT

1. To investigate the effects of tetrahydroxystilbene glucoside (TSG), the main active component of Polygonum multiflorum, on mouse liver cytochrome P450 (Cyp) enzyme protein expressions. Male mice were randomly divided into the control, TSG low (10 mg/kg) and high dose (40 mg/kg) groups. After TSG intragastrical administration for 3, 5 and 7 d, mice were sacrificed and the mouse body and liver weight were detected. The Cyp enzymes and various transcription factors such as AhR, PXR and PPARα protein expressions in mouse livers were measured by Western blotting assay. 2. No significant difference of mouse body and liver weight between the control and TSG treatment groups was detected. Additionally, TSG decreased Cyp1a2 and Cyp2e1 protein expressions after TSG treatment for 3, 5 and 7 d, respectively. Moreover, TSG suppressed Cyp3a11 protein expression after TSG treatment for 5 and 7 d. Furthermore, TSG high dose inhibited AhR and PXR protein expressions after TSG treatment for 5 and 7 d, while both TSG low dose and high dose obviously decreased PPARα protein level from TSG treatment for 3 d. 3. TSG has inhibitory effects on mouse liver Cyp1a2, Cyp2e1 and Cyp3a11 protein expressions through the suppression of AhR, PXR and PPARα activation.


Subject(s)
Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Glucosides/pharmacology , Liver/drug effects , Membrane Proteins/metabolism , Stilbenes/pharmacology , Animals , Body Weight/drug effects , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP3A/genetics , Male , Membrane Proteins/genetics , Mice , Organ Size/drug effects , PPAR alpha/genetics , PPAR alpha/metabolism , Pregnane X Receptor , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...