Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.470
Filter
1.
J Mater Chem B ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716492

ABSTRACT

Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.

2.
Nat Astron ; 8(4): 504-519, 2024.
Article in English | MEDLINE | ID: mdl-38659610

ABSTRACT

Dust associated with various stellar sources in galaxies at all cosmic epochs remains a controversial topic, particularly whether supernovae play an important role in dust production. We report evidence of dust formation in the cold, dense shell behind the ejecta-circumstellar medium (CSM) interaction in the Type Ia-CSM supernova (SN) 2018evt three years after the explosion, characterized by a rise in mid-infrared emission accompanied by an accelerated decline in the optical radiation of the SN. Such a dust-formation picture is also corroborated by the concurrent evolution of the profiles of the Hα emission line. Our model suggests enhanced CSM dust concentration at increasing distances from the SN as compared to what can be expected from the density profile of the mass loss from a steady stellar wind. By the time of the last mid-infrared observations at day +1,041, a total amount of 1.2 ± 0.2 × 10-2 M⊙ of new dust has been formed by SN 2018evt, making SN 2018evt one of the most prolific dust factories among supernovae with evidence of dust formation. The unprecedented witness of the intense production procedure of dust may shed light on the perceptions of dust formation in cosmic history.

3.
Pharmacol Res ; 203: 107164, 2024 May.
Article in English | MEDLINE | ID: mdl-38569981

ABSTRACT

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Subject(s)
Cardiovascular Diseases , Mitochondrial Proteins , Muscle Proteins , Humans , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Muscle Proteins/metabolism , Muscle Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects
4.
Chem Biol Interact ; 394: 110987, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574835

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase , Molecular Docking Simulation , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/chemistry , Animals , Humans , Rats , Structure-Activity Relationship , Membrane Proteins/metabolism , Fluorocarbons/chemistry , Fluorocarbons/metabolism , Fluorocarbons/pharmacology , Protein Binding , Carbon/chemistry , Carbon/metabolism , Binding Sites
5.
Clin Mol Hepatol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637957

ABSTRACT

Backgrounds and Aim: Chronic hepatitis C (CHC) patients who fail antiviral therapy have a high risk of developing hepatocellular carcinoma (HCC). We investigated the effects of metformin and statins, commonly used to treat diabetes mellitus (DM) and hyperlipidemia (HLP), on HCC risk in CHC patients who failed antiviral therapy. Methods: CHC patients with failed interferon-based therapy were enrolled in a large-scale multicenter cohort study in Taiwan (T-COACH). HCC occurrence 1.5 years after the end of antiviral therapy was identified by linking to the cancer registry databases from 2003 to 2019. After considering death and liver transplantation as competing risks, Gray's cumulative incidence and Cox sub-distribution hazards for HCC development were used. Results: Among the 2,779 CHC patients, 480 (17.3%) developed new-onset HCC and 238 (8.6%) died after antiviral therapy. Metformin non-users with DM had a 51% higher risk of liver cancer than patients without DM, while statin users with HLP had a 50% lower risk of liver cancer than patients without HLP. The 5-year cumulative incidence of HCC was 16.5% in metformin non-users, significantly higher in metformin non-users than in patients without DM (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Conversely, HLP statin users had a significantly lower HCC risk than patients without HLP (3.8% vs. 12.5%; aSHR=0.50; P<0.001). Notably, the unfavorable effect of non-metformin use on increased HCC risk was mainly observed among patients without cirrhosis but not in patients with cirrhosis. In contrast, a favorable effect of statins reduced the risk of HCC in both cirrhotic and non-cirrhotic patients. Conclusion: Metformin for DM and statins for HLP have chemopreventive effects on HCC risk in CHC patients who failed antiviral therapy. These findings emphasize the importance of personalized preventive strategies for managing patients with these clinical profiles.

6.
J Clin Transl Hepatol ; 12(4): 436-442, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38638382

ABSTRACT

Hepatic myelopathy (HM) is a rare neurological complication in the end stage of many liver diseases and is characterized by bilateral spastic paraparesis without sensory and sphincter dysfunction. It occurs owing to metabolic disorders and central nervous system dysfunction associated with cirrhosis. Without timely and effective clinical intervention, the prognosis of these patients is devastating. Although liver transplantation (LT) is an effective treatment for HM, the prognosis of these patients remains unsatisfactory. Early recognition and diagnosis of this disease are essential for improving patient prognosis. Here, we report a case of hepatitis B virus-associated decompensated cirrhosis with HM. The patient recovered well after LT. We also summarize the clinical characteristics and post-transplant outcomes of 25 patients with HM treated by LT through 2023, including this case.

7.
J Am Chem Soc ; 146(15): 10785-10797, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573588

ABSTRACT

The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP). Under 1064 nm excitation, this photon upconversion revealed a record-corrected upconversion efficiency of 0.37% (normalized to 100%), with the anti-Stokes shift (1.07 eV) approaching the theoretical limit (1.17 eV). The observation of this unexpected result is due to our discovery of the presence of a weak interaction between the sulfur atom on Th-DPP and Pb2+ on the PbS QDs surface, facilitating electronic coupling between PbS QDs and Th-DPP, such that the realization of triplet exciton transfer efficiency is close to 100% even when the energy gap is as small as 0.04 eV. With this premise, this photon upconversion as a photocatalyst enables the production of standing organic gel via photopolymerization under 1064 nm illumination, displaying NIR-II photon-driven photoredox catalysis. This research not only establishes the foundation for enhancing the performance of NIR-II excitable photonic upconversion but also promotes its development in photonics and photoredox catalysis.

8.
Infect Dis Ther ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679663

ABSTRACT

INTRODUCTION: Eight-week glecaprevir/pibrentasvir (GLE/PIB) is indicated for treatment-naïve (TN) patients with chronic hepatitis C (CHC), with or without compensated cirrhosis. Given that the Taiwanese government is committed to eliminating hepatitis C virus (HCV) by 2025, this study aimed to measure real-world evidence for TN patients using 8-week GLE/PIB in the Taiwan HCV Registry (TACR). METHODS: The data of patients with CHC treated with 8-week GLE/PIB were retrieved from TACR, a nationwide registry program organized by the Taiwan Association for the Study of the Liver (TASL). Treatment efficacy, defined as a sustained virologic response at posttreatment week 12 (SVR12), was assessed in the modified intention-to-treat (mITT) population, which excluded patients who were lost to follow-up or lacked SVR12 data. The safety profile of the ITT population was assessed. RESULTS: A total of 7246 (6897 without cirrhosis; 349 with cirrhosis) patients received at least one dose of GLE/PIB (ITT), 7204 of whom had SVR12 data available (mITT). The overall SVR12 rate was 98.9% (7122/7204) among all patients, 98.9% (6780/6856) and 98.3% (342/348) among patients without and with cirrhosis, respectively. For the selected subgroups, which included patients with genotype 3 infection, diabetes, chronic kidney disease, people who injected drugs, and those with human immunodeficiency virus coinfection, the SVR12 rates were 95.1% (272/286), 98.9% (1084/1096), 99.0% (1171/1183), 97.4% (566/581), and 96.1% (248/258), respectively. Overall, 14.1% (1021/7246) of the patients experienced adverse events (AEs). Twenty-two patients (0.3%) experienced serious AEs, and 15 events (0.2%) resulted in permanent drug discontinuation. Only one event was considered treatment drug related. CONCLUSION: Eight-week GLE/PIB therapy was effective and well tolerated in all TN patients, regardless of cirrhosis status.

9.
Cancer Lett ; 590: 216842, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38582395

ABSTRACT

Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Exosomes , MicroRNAs , Superoxide Dismutase-1 , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cisplatin/pharmacology , Exosomes/metabolism , Exosomes/genetics , Phosphorylation , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Cell Line, Tumor , Tumor Microenvironment , Fibroblasts/metabolism , Fibroblasts/drug effects , NF-kappa B/metabolism , NF-kappa B/genetics , Signal Transduction/drug effects , Animals , Mice , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology
10.
Ultrasonics ; 140: 107315, 2024 May.
Article in English | MEDLINE | ID: mdl-38603903

ABSTRACT

Lung diseases are commonly diagnosed based on clinical pathological indications criteria and radiological imaging tools (e.g., X-rays and CT). During a pandemic like COVID-19, the use of ultrasound imaging devices has broadened for emergency examinations by taking their unique advantages such as portability, real-time detection, easy operation and no radiation. This provides a rapid, safe, and cost-effective imaging modality for screening lung diseases. However, the current pulmonary ultrasound diagnosis mainly relies on the subjective assessments of sonographers, which has high requirements for the operator's professional ability and clinical experience. In this study, we proposed an objective and quantifiable algorithm for the diagnosis of lung diseases that utilizes two-dimensional (2D) spectral features of ultrasound radiofrequency (RF) signals. The ultrasound data samples consisted of a set of RF signal frames, which were collected by professional sonographers. In each case, a region of interest of uniform size was delineated along the pleural line. The standard deviation curve of the 2D spatial spectrum was calculated and smoothed. A linear fit was applied to the high-frequency segment of the processed data curve, and the slope of the fitted line was defined as the frequency spectrum standard deviation slope (FSSDS). Based on the current data, the method exhibited a superior diagnostic sensitivity of 98% and an accuracy of 91% for the identification of lung diseases. The area under the curve obtained by the current method exceeded the results obtained that interpreted by professional sonographers, which indicated that the current method could provide strong support for the clinical ultrasound diagnosis of lung diseases.


Subject(s)
Algorithms , COVID-19 , Lung Diseases , Ultrasonography , Humans , Ultrasonography/methods , Lung Diseases/diagnostic imaging , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Male , Female , Middle Aged , Image Interpretation, Computer-Assisted/methods , SARS-CoV-2
11.
Oral Oncol ; 152: 106760, 2024 May.
Article in English | MEDLINE | ID: mdl-38520758

ABSTRACT

This study explored the relationship between betel-nut chewing and programmed death-ligand 1 (PD-L1) expression in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients in Taiwan. A total 280 R/M HNSCC patients, predominantly male, were evaluated; 75.4 % of whom chewed betel-nut. The prevalence of PD-L1 expression (combined positive score ≥1) was 94.3 % with similar PD-L1 expression rates between betel-nut-exposed and non-exposed groups. PD-L1 prevalence did not differ in those who received prior first-or second-line systemic therapy. In summary, betel-nut exposure did not notably affect PD-L1 expression rates in R/M HNSCC patients in Taiwan.


Subject(s)
Areca , B7-H1 Antigen , Head and Neck Neoplasms , Neoplasm Recurrence, Local , Squamous Cell Carcinoma of Head and Neck , Humans , B7-H1 Antigen/metabolism , Male , Areca/adverse effects , Female , Middle Aged , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Prospective Studies , Aged , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/epidemiology , Biomarkers, Tumor/metabolism , Adult , Taiwan/epidemiology , Mastication , Prevalence , Neoplasm Metastasis
12.
Biomolecules ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540790

ABSTRACT

Diatoms, efficient carbon capture organisms, contribute to 20% of global carbon fixation and 40% of ocean primary productivity, garnering significant attention to their growth. Despite their significance, the synthesis mechanism of polyamines (PAs), especially spermidine (Spd), which are crucial for growth in various organisms, remains unexplored in diatoms. This study reveals the vital role of Spd, synthesized through the spermidine synthase (SDS)-based pathway, in the growth of the diatom Phaeodactylum tricornutum. PtSDS1 and PtSDS2 in the P. tricornutum genome were confirmed as SDS enzymes through enzyme-substrate selectivity assays. Their distinct activities are governed primarily by the Y79 active site. Overexpression of a singular gene revealed that PtSDS1, PtSDS2, and PtSAMDC from the SDS-based synthesis pathway are all situated in the cytoplasm, with no significant impact on PA content or diatom growth. Co-overexpression of PtSDS1 and PtSAMDC proved essential for elevating Spd levels, indicating multifactorial regulation. Elevated Spd content promotes diatom growth, providing a foundation for exploring PA functions and regulation in diatoms.


Subject(s)
Diatoms , Diatoms/genetics , Diatoms/metabolism , Spermidine Synthase/genetics , Spermidine Synthase/metabolism , Polyamines/metabolism , Biosynthetic Pathways , Genome
13.
Foods ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38540844

ABSTRACT

Banana is a typical cold-sensitive fruit; it is prone to chilling injury (CI), resulting in a quality deterioration and commodity reduction. However, the molecular mechanism underlying CI development is unclear. In this study, cold storage (7 °C for 5 days) was used to induce CI symptoms in bananas. As compared with the control storage (22 °C for 5 days), cold storage increased the CI index and cell membrane permeability. Moreover, we found that the expression levels of the WRKY transcription factor MaWRKY70 were increased consistently with the progression of CI development. A subcellular localization assay revealed that MaWRKY70 was localized in the nucleus. Transcriptional activation analyses showed that MaWRKY70 processed a transactivation ability. Further, an electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter (DLR) assays showed that MaWRKY70 was directly bound to the W-box motifs in the promoters of four lipoxygenase (LOX) genes associated with membrane lipid degradation and activated their transcription. Collectively, these findings demonstrate that MaWRKY70 activates the transcription of MaLOXs, thereby acting as a possible positive modulator of postharvest CI development in banana fruit.

14.
Nat Prod Res ; : 1-11, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498767

ABSTRACT

The chemical investigation of the fibrous roots of Ophiopogon japonicus afforded two new steroidal saponins, named ophiojaponin F (1) and ophiojaponin G (2), together with twelve known steroidal saponins (3-14) and ten known homoisoflavonoids (15-24). The structures of the isolated compounds were established unambiguously via spectroscopic analyses (NMR and HR-ESI-MS). Ophiojaponin F (1) is a 23-hydroxylated spirostanol saponin, and this type of steroidal saponin rarely been reported in liriopogons. All isolates were evaluated for their anti-pulmonary fibrosis activities on TGF-ß1-actived NIH3T3 cells for the first time. Among them, compounds 3, 4, 11-13, 15-19, 21 and 24 showed potential anti-pulmonary fibrosis effects with IC50 values ranging from 3.61 ± 0.86 µM to 21.33 ± 1.82 µM, and the main component ophiopogonin D (4) displayed the best activity with an IC50 value of 3.61 ± 0.86 µM. Thus, ophiopogonin D may be a potent candidate for the treatment of pulmonary fibrosis.

15.
J Formos Med Assoc ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38494360

ABSTRACT

BACKGROUND: Perioperative immunosuppressants, such as surgical stress and opioid use may downregulate anti-cancer immunocytes for patients undergoing pancreatectomy. Thoracic epidural analgesia (TEA) may attenuate these negative effects and provide better anti-cancer immunocyte profile change than intravenous analgesia using opioid. METHODS: We randomly assigned 108 adult patients undergoing pancreatectomy to receive one of two 72-h postoperative analgesia protocols: one was TEA, and the other was intravenous patient-controlled analgesia (IV-PCA). The perioperative proportional changes of immunocytes relevant to anticancer immunity-namely natural killer (NK) cells, cytotoxic T cells, helper T cells, mature dendritic cells, and regulatory T (Treg) cells were determined at 1 day before surgery, at the end of surgery and on postoperative day 1,4 and 7 using flow cytometry. In addition, the progression-free survival and overall survival between the two groups were compared. RESULTS: After surgery, the proportions of NK cells and cytotoxic T cells were significantly decreased; the proportion of B cells and mature dendritic cells and Treg cells were significantly increased. However, the proportions of helper T cells exhibited no significant change. These results were comparable between the two groups. Furthermore, there were no significant differences in progression-free survival (52.75 [39.96] and 57.48 [43.66] months for patients in the TEA and IV-PCA groups, respectively; p = 0.5600) and overall survival (62.71 [35.48] and 75.11 [33.10] months for patients in the TEA and IV-PCA groups, respectively; p = 0.0644). CONCLUSIONS: TEA was neither associated with favorable anticancer immunity nor favorable oncological outcomes for patients undergoing pancreatectomy.

16.
Acta Trop ; 253: 107170, 2024 May.
Article in English | MEDLINE | ID: mdl-38467234

ABSTRACT

Spatial analysis of infectious diseases can play an important role in mapping the spread of diseases and can support policy making at local level. Moreover, identification of disease clusters based on local geography and landscape forms the basis for disease control and prevention. Therefore, this study aimed to examine the spatial-temporal variations, hotspot areas, and potential risk factors of infectious diseases (including Viral Hepatitis, Typhoid and Diarrhea) in Ahmedabad city of India. We used Moran's I and Local Indicators of Spatial Association (LISA) mapping to detect spatial clustering of diseases. Spatial and temporal regression analysis was used to identify the association between disease incidence and spatial risk factors. The Moran's I statistics identified presence of positive spatial autocorrelation within the considered diseases, with Moran's I from 0.09 for typhoid to 0.21 for diarrhea (p < 0.001). This indicates a clustering of affected wards for each disease, suggesting that cases were not randomly distributed across the city. LISA mapping demonstrated the clustering of hotspots in central regions of the city, especially towards the east of the river Sabarmati, highlighting key geographical areas with elevated disease risk. The spatial clusters of infectious diseases were consistently associated with slum population density and illiteracy. Furthermore, temporal analysis suggested illiteracy rates could increase risk of viral hepatitis by 13 % (95 % Confidence Interval (CI): 1.01-1.26) and of diarrhea by 18 % (95 % CI: 1.07-1.31). Significant inverse association was also seen between viral hepatitis incidence and the distance of wards from rivers. Conclusively, the study highlight the impact of socio-economic gradients, such as slum population density (indicative of poverty) and illiteracy, on the localized transmission of water and foodborne infections. The evident social stratification between impoverished and affluent households emerges as a notable contributing factor and a potential source of differences in the dynamics of infectious diseases in Ahmedabad.


Subject(s)
Communicable Diseases , Hepatitis, Viral, Human , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Health Planning , Spatial Analysis , Diarrhea/epidemiology , India/epidemiology , Water , Cluster Analysis
17.
BMC Pharmacol Toxicol ; 25(1): 24, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443996

ABSTRACT

BACKGROUND: This study aimed to evaluate the long-term risk of CKD and renal function declines using a combination of diuretics and SGLT2i. METHODS: We selected the data of subjects who had at least two outpatient records or at least one inpatient record for DM treatment as the DM group from the National Health Insurance Research Database (NHIRD). Patients receiving versus not receiving SGLT2i were defined as the SGLT2i and non-SGLT2i cohorts, respectively. The patients in the two groups were matched 1:1 through propensity score matching based on age, sex, year of index date, and comorbidities. RESULTS: The diuretics-only group had a higher risk of CKD (aHR, 2.46; 95% CI, 1.68-3.61) compared to the neither SGLT2i nor diuretics group, while the both SGLT2i and diuretics group and the SGLT2i only group had lower risks (aHR, 0.45, 95% CI, 0.32-0.63; aHR, 0.26, 95% CI, 0.17-0.40) than the diuretics-only group. The SGLT2i-only group had a lower risk (aHR, 0.58, 95% CI, 0.36-0.94) than the both SGLT2i and diuretics group. CONCLUSION: This study indicates that diuretics could raise the risk of CKD in diabetic patients, but when used in combination with SGLT2i, they continue to offer protection against CKD.


Subject(s)
Inpatients , Renal Insufficiency, Chronic , Humans , Taiwan/epidemiology , Retrospective Studies , Diuretics/adverse effects , Renal Insufficiency, Chronic/epidemiology
18.
Hepatol Int ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460060

ABSTRACT

End-stage liver disease (ESLD) is a life-threatening clinical syndrome and when complicated with infection the mortality is markedly increased. In patients with ESLD, bacterial or fungal infection can induce or aggravate the occurrence or progression of liver decompensation. Consequently, infections are among the most common complications of disease deterioration. There is an overwhelming need for standardized protocols for early diagnosis and appropriate management for patients with ESLD complicated by infections. Asia Pacific region has the largest number of ESLD patients, due to hepatitis B and the growing population of alcohol and NAFLD. Concomitant infections not only add to organ failure and high mortality but also to financial and healthcare burdens. This consensus document assembled up-to-date knowledge and experience from colleagues across the Asia-Pacific region, providing data on the principles as well as evidence-based current working protocols and practices for the diagnosis and treatment of patients with ESLD complicated by infections.

19.
PLoS One ; 19(3): e0298338, 2024.
Article in English | MEDLINE | ID: mdl-38451906

ABSTRACT

The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22-72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.


Subject(s)
Diptera , Escherichia coli , Animals , Escherichia coli/genetics , Cathepsin L/genetics , Cathepsin L/metabolism , Diptera/genetics , Larva/physiology , RNA, Messenger/metabolism
20.
J Sport Health Sci ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552714

ABSTRACT

BACKGROUND: Lifestyle plays an important role in preventing and managing gastroesophageal reflux disease (GERD). In response to the conflicting results in previous studies, we performed a systematic review and meta-analysis to investigate this association. METHODS: Relevant studies published until January 2023 were retrieved from 6 databases, and the prevalence of symptomatic gastroesophageal reflux (GER) or GERD was determined from the original studies. A random effects model was employed to meta-analyze the association by computing the pooled relative risk (RR) with 95% confidence intervals (95%CIs). Furthermore, subgroup and dose-response analyses were performed to explore subgroup differences and the association between cumulative physical activity (PA) time and GERD. RESULTS: This meta-analysis included 33 studies comprising 242,850 participants. A significant negative association was observed between PA and the prevalence of symptomatic GER (RR = 0.74, 95%CI: 0.66-0.83; p < 0.01) or GERD (RR = 0.80, 95%CI: 0.76-0.84; p < 0.01), suggesting that engaging in PA might confer a protective benefit against GERD. Subgroup analyses consistently indicated the presence of this association across nearly all subgroups, particularly among the older individuals (RR<40 years:RR≥40 years = 0.85:0.69, p < 0.01) and smokers (RRsmoker:RRnon-smoker = 0.67:0.82, p = 0.03). Furthermore, a dose-response analysis revealed that individuals who engaged in 150 min of PA per week had a 72.09% lower risk of developing GERD. CONCLUSION: Maintaining high levels of PA decreased the risk of GERD, particularly among older adults and smokers. Meeting the recommended PA level of 150 min per week may significantly decrease the prevalence of GERD.

SELECTION OF CITATIONS
SEARCH DETAIL
...