Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(8): 3213-3220, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37428894

ABSTRACT

Biofilm formation and growth is a significant concern for water treatment professionals, as it can lead to the contamination of water systems and pose a threat to public health. Biofilms are complex communities of microorganisms that adhere to surfaces and are embedded in an extracellular matrix of polysaccharides and proteins. They are notoriously difficult to control, as they provide a protective environment for bacteria, viruses, and other harmful organisms to grow and proliferate. This review article highlights some of the factors that favor biofilm growth, as well as various strategies for controlling biofilm in water systems. Adopting the best available technologies, such as wellhead protection programs, proper industrial cooling water system maintenance, and filtration and disinfection, can prevent the formation and growth of biofilms in water systems. A comprehensive and multifaceted approach to biofilm control can reduce the occurrence of biofilms and ensure the delivery of high-quality water to the industrial process.


Subject(s)
Biofilms , Water Purification , Bacteria , Disinfection
2.
Food Funct ; 11(9): 8150-8160, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966478

ABSTRACT

Quercetin is a natural flavonoid that occurs in fruits and vegetables. Retinal inflammation is an important cause of vision loss. This study was aimed to analyze the effects of oral administration of quercetin on retinal inflammation. Transgenic mice, carrying nuclear factor-κB (NF-κB)-driven luciferase genes, were injected with 1 mg per kg body weight of lipopolysaccharide (LPS). Various amounts (1, 10, and 100 mg per kg body weight) of quercetin were orally given to mice. LPS-induced retinal inflammation was evaluated by bioluminescence imaging and histological examination 4 hours later. RNA-Seq analysis of gene expression profiles was performed to explain the mechanisms of quercetin on eye inflammation. Our data showed that LPS enhanced luminescent signals on ocular tissues, while LPS-induced luminescence intensities were significantly suppressed by quercetin by 73.61 ± 21.74%. LPS significantly increased the thickness of retinal tissues by 1.52 ± 0.37 fold, in comparison with the mock, while quercetin reduced the LPS-induced retinal thickness and decreased the accumulation of infiltrating granulocytes. Biological pathway analysis showed that tumor necrosis factor (TNF), cytokine, and NF-κB signaling pathways were involved in the anti-inflammatory mechanisms of quercetin. Immunohistochemical staining further showed that quercetin reduced the activation of NF-κB, the expression of interleukin-1ß and TNF-α, and the infiltration of granulocytes in retinal tissues. In conclusion, this is the first study reporting the effects and mechanisms of orally administered quercetin against LPS-induced retinal inflammation in mice. Due to its safety, our study suggested that supplementation of quercetin has beneficial effects on the eyes.


Subject(s)
NF-kappa B/immunology , Protective Agents/administration & dosage , Quercetin/administration & dosage , Retinal Diseases/prevention & control , Tumor Necrosis Factor-alpha/immunology , Animals , Anti-Inflammatory Agents/administration & dosage , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Male , Mice , NF-kappa B/genetics , Retinal Diseases/genetics , Retinal Diseases/immunology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL