Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 1440, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365914

ABSTRACT

The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Proteins , Animals , Mice , Disease Models, Animal , Mammals/metabolism , Proteins/metabolism , Proteomics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Nat Commun ; 15(1): 1531, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378719

ABSTRACT

Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, here we execute unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discover a mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism appears to be dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of this protein. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus, we describe cell-autonomous, rheostatic collagen clearance as an important pathway of tissue homeostasis.


Subject(s)
Collagen , Extracellular Matrix , Animals , Humans , Collagen/metabolism , Extracellular Matrix/metabolism , Fibrosis , Proteolysis , Lung/pathology , Mammals/metabolism , Proteins/metabolism
4.
Nat Commun ; 15(1): 659, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253565

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Glycosylphosphatidylinositols , Animals , Mice , Humans , HEK293 Cells , Proteomics , GPI-Linked Proteins , Proteins
5.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37943610

ABSTRACT

Recent studies using cell type-specific knockout mouse models have improved our understanding of the pathophysiological relevance of suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) endoplasmic reticulum-associated (ER-associated) degradation (ERAD); however, its importance in humans remains unclear, as no disease variant has been identified. Here, we report the identification of 3 biallelic missense variants of SEL1L and HRD1 (or SYVN1) in 6 children from 3 independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia, and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD, including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provides insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establishes the importance of SEL1L-HRD1 ERAD in humans.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Neurodevelopmental Disorders , Animals , Child , Humans , Mice , Endoplasmic Reticulum-Associated Degradation/genetics , Mice, Knockout , Neurodevelopmental Disorders/genetics , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
6.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37943617

ABSTRACT

Suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) ER-associated degradation (ERAD) plays a critical role in many physiological processes in mice, including immunity, water homeostasis, and energy metabolism; however, its relevance and importance in humans remain unclear, as no disease variant has been identified. Here, we report a biallelic SEL1L variant (p. Cys141Tyr) in 5 patients from a consanguineous Slovakian family. These patients presented with not only ERAD-associated neurodevelopmental disorders with onset in infancy (ENDI) syndromes, but infantile-onset agammaglobulinemia with no mature B cells, resulting in frequent infections and early death. This variant disrupted the formation of a disulfide bond in the luminal fibronectin II domain of SEL1L, largely abolishing the function of the SEL1L-HRD1 ERAD complex in part via proteasomal-mediated self destruction by HRD1. This study reports a disease entity termed ENDI-agammaglobulinemia (ENDI-A) syndrome and establishes an inverse correlation between SEL1L-HRD1 ERAD functionality and disease severity in humans.


Subject(s)
Agammaglobulinemia , Proteins , Humans , Mice , Animals , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Endoplasmic Reticulum-Associated Degradation , Agammaglobulinemia/genetics , Mortality, Premature
7.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333389

ABSTRACT

The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD); however, definitive evidence for the importance of SEL1L in HRD1 ERAD is lacking. Here we report that attenuation of the interaction between SEL1L and HRD1 impairs HRD1 ERAD function and has pathological consequences in mice. Our data show that SEL1L variant p.Ser658Pro ( SEL1L S 658 P ) previously identified in Finnish Hound suffering cerebellar ataxia is a recessive hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Mechanistically, SEL1L S 658 P variant attenuates the SEL1L-HRD1 interaction and causes HRD1 dysfunction by generating electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes revealed that the SEL1L-HRD1 interaction is prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L recruits not only the lectins OS9 and ERLEC1, but the E2 UBE2J1 and retrotranslocon DERLIN, to HRD1. These data underscore the pathophysiological importance and disease relevance of the SEL1L-HRD1 complex, and identify a key step in organizing the HRD1 ERAD complex.

8.
Nat Commun ; 14(1): 3132, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253728

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) and ER-phagy are two principal degradative mechanisms for ER proteins and aggregates, respectively; however, the crosstalk between these two pathways under physiological settings remains unexplored. Using adipocytes as a model system, here we report that SEL1L-HRD1 protein complex of ERAD degrades misfolded ER proteins and limits ER-phagy and that, only when SEL1L-HRD1 ERAD is impaired, the ER becomes fragmented and cleared by ER-phagy. When both are compromised, ER fragments containing misfolded proteins spatially coalesce into a distinct architecture termed Coalescence of ER Fragments (CERFs), consisted of lipoprotein lipase (LPL, a key lipolytic enzyme and an endogenous SEL1L-HRD1 substrate) and certain ER chaperones. CERFs enlarge and become increasingly insoluble with age. Finally, we reconstitute the CERFs through LPL and BiP phase separation in vitro, a process influenced by both redox environment and C-terminal tryptophan loop of LPL. Hence, our findings demonstrate a sequence of events centered around SEL1L-HRD1 ERAD to dispose of misfolded proteins in the ER of adipocytes, highlighting the profound cellular adaptability to misfolded proteins in the ER in vivo.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Adipocytes/metabolism
9.
Nat Cell Biol ; 25(5): 726-739, 2023 05.
Article in English | MEDLINE | ID: mdl-37142791

ABSTRACT

Stimulator of interferon genes (STING) orchestrates the production of proinflammatory cytokines in response to cytosolic double-stranded DNA; however, the pathophysiological significance and molecular mechanism underlying the folding and maturation of nascent STING protein at the endoplasmic reticulum (ER) remain unknown. Here we report that the SEL1L-HRD1 protein complex-the most conserved branch of ER-associated degradation (ERAD)-is a negative regulator of the STING innate immunity by ubiquitinating and targeting nascent STING protein for proteasomal degradation in the basal state. SEL1L or HRD1 deficiency in macrophages specifically amplifies STING signalling and immunity against viral infection and tumour growth. Mechanistically, nascent STING protein is a bona fide substrate of SEL1L-HRD1 in the basal state, uncoupled from ER stress or its sensor inositol-requiring enzyme 1α. Hence, our study not only establishes a key role of SEL1L-HRD1 ERAD in innate immunity by limiting the size of the activable STING pool, but identifies a regulatory mechanism and therapeutic approach to targeting STING.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum/metabolism , Immunity, Innate
10.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33591954

ABSTRACT

Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Glomerular Filtration Rate , Membrane Proteins/metabolism , Podocytes/metabolism , Animals , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Mice , Mice, Transgenic , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Proteins/genetics , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Nat Commun ; 10(1): 3492, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375683

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) is a unique mechanism to degrade misfolded proteins via complexes containing several highly-conserved ER-anchored ubiquitin ligases such as HMG-CoA reductase degradation1 (Hrd1). Arabidopsis has a similar Hrd1-containing ERAD machinery; however, our knowledge of this complex is limited. Here we report two closely-related Arabidopsis proteins, Protein Associated With Hrd1-1 (PAWH1) and PAWH2, which share a conserved domain with yeast Altered Inheritance of Mitochondria24. PAWH1 and PAWH2 localize to the ER membrane and associate with Hrd1 via EMS-mutagenized Bri1 Suppressor7 (EBS7), a plant-specific component of the Hrd1 complex. Simultaneously elimination of two PAWHs constitutively activates the unfolded protein response and compromises stress tolerance. Importantly, the pawh1 pawh2 double mutation reduces the protein abundance of EBS7 and Hrd1 and inhibits degradation of several ERAD substrates. Our study not only discovers additional plant-specific components of the Arabidopsis Hrd1 complex but also reveals a distinct mechanism for regulating the Hrd1 stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...