Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33118874

ABSTRACT

The pathogen of Pantoea stewartii subsp. stewartii (Pss) that is the causal agent of Stewart's bacterial wilt of corn also infects numerous experimental hosts of graminaceous plants (Pepper et al., 1967; Wang et al., 2012). However, little is known about this pathogen naturally infecting sugarcane. In 2017, we observed some sugarcane cultivars showing leaf blade bleaching at the disease initiation stage, which further resulted in development of blight and necrotic lesions (Figure 1-A and -B) in Zhanjiang, Guangdong province of China. To diagnose this putative disease, five symptomatic leaf samples were collected from different sugarcane cultivars. The Pss was found to infect these samples using the nested PCR with Pss-specific outer primers PS1/PS4 and inner primers Ps2r/Ps3r that targeted at the 16S rRNA gene of this pathogen (Wang et al., 2009). The expected 262-bp fragments from positive samples were amplified, cloned, and sequenced (GenBank accession no. MW015795-MW015799). BLASTN analysis revealed that these isolates had more than 99.5% nucleotide identify (222 bp out of 262 bp) with each other and with Pss strains (ATCC 8199 and DC283) as well as P. stewartii subsp. indologenes strains (SR2-12 and LMG 2632) after sequences were trimmed at the 5'- and 3'-terminal of inner primer sequences. In addition, these leaf samples were surface-sterilized with 75% alcohol followed by macerated and chopped in sterile water. Upon plating on solid NA medium at 28 °C for 24-36 h, the bacterial colonies exhibited yellow color with circular, convex, smooth and translucent edges (Figure 1-C). Straight rods and non-encapsulated cells were detected under transmission electron microscopy (Figure 1-D). Moreover, an identical colony termed as PSCN1 was isolated from sugarcane cultivar YZ08-1095 and was further confirmed by the PCR with a universal primer pair 63F (5'-CAGGCCTAACACATGCAAGTC-3') and 1387R (5'-GGGCGGWGTGTACAAGGC-3') that targeted at bacterial 16S rRNA gene (Marchesi et al., 1998). A 1362-bp DNA fragment sequence was obtained from PSCN1 strain and deposited on GenBank library (accession no. MW015767). Sequence analysis showed that PSCN1 shared 99.9-100% nucleotide identity (1315 bp out of 1362 bp) with the two reference strains of Pss (ATCC 8199 and DC283) after sequences were trimmed at the 5'- and 3'-terminal of primer sequences. According to Koch's postulates, pathogenicity test was carried out on YZ08-1095 plants with 3-5 fully developed leaf inoculated with the suspended cells (108 cells/ml) of PSCN1 strain by cutting the one-third of leaves before spraying with a suspension. Control plants were mock-inoculated with serial liquid nutrition agar medium. Two independent experiments were performed for pathogenicity assay and more than 28 plants of YZ08-1095 were used in each treatment. Plants were cultured in a growth chamber at 28 °C and 60% humidity under a 16 h light/8 h dark photoperiod. Leaves inoculated by the PSCN1 initially showed bleached, blight and wilting symptoms on leaf edges at seven days post-inoculation (dpi) (Figure 1-E and -F), which were similar to those symptoms observed in the fields. Control plants remained asymptomatic (Figure 1-G). The average incidence of diseased plant was 51.9% at 21 dpi. The bacteria were subsequently re-isolated from diseased leaves, and yielded colonies were completely identical to the PSCN1. Taken together, our data provides the valuable information for diagnosis and controlling this disease in sugarcane.

2.
Int J Pharm ; 297(1-2): 89-97, 2005 Jun 13.
Article in English | MEDLINE | ID: mdl-15885936

ABSTRACT

A non-disintegrating polymeric capsule system, in which asymmetric membrane offers an improved osmotic effect, was used to deliver poorly water-soluble drugs in a control manner. The capsule wall membrane was made by a phase inversion process, in which asymmetric membrane was formed on stainless-steel mold pins by dipping the mold pins into a coating solution containing a polymeric material followed by dipping into a quench solution. This study evaluates the influence of coating formulation that was cellulose acetate (CA), ethylcellulose (EC), and plasticizer (glycerin and triethyl citrate). Results show capsule that made by CA with glycerin (formulation A), which appear in asymmetric structure and are able to release chlorpheniramine maleate (CM) in significant percentage. Two poorly water-soluble drugs of felodipine (FL) and nifedipine (NF) were selected as the model drug to demonstrate how the controlled release characteristics can be manipulated by the design of polymeric capsules with an asymmetric membrane and core formulations. Results show that sodium lauryl sulfate (SLS) is able to promote the release of FL from polymeric capsules prepared with CA with asymmetrical membrane. The addition of solubilizer, including RH40, PVP K-17, and PEG 4000 could enhance the release of FL but with an extent not being related to its solubility. Based on these results, influence of core formulation variables, including the viscosity and added amount of hydroxypropyl methylcellulose (HPMC), the added amount of SLS, and drug loading were examined on the release of NF. It was found that HPMC of 50 cps was suitable to be a thickening agent and both added amount of HPMC and SLS showed a comparable and profoundly positive effect, whereas NF loading had no influence on the drug release percent and rate. There existed a synergistic interaction between HPMC and SLS on the release percent and rate.


Subject(s)
Capsules/chemistry , Drug Delivery Systems , Membranes, Artificial , Pharmaceutical Preparations/administration & dosage , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Lactose/analogs & derivatives , Methylcellulose/analogs & derivatives , Microscopy, Electron, Scanning , Osmosis , Oxazines , Pharmaceutical Preparations/chemistry , Polysorbates , Sodium Dodecyl Sulfate , Solubility , Spectrophotometry, Ultraviolet , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL