Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6295, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060234

ABSTRACT

Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.


Subject(s)
CA1 Region, Hippocampal , Dendrites , Pyramidal Cells , Animals , Dendrites/physiology , Dendrites/metabolism , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Mice , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Membrane Potentials/physiology , Male , Mice, Inbred C57BL , Hippocampus/physiology , Hippocampus/cytology , Spatial Navigation/physiology , Locomotion/physiology
2.
Sci Transl Med ; 16(738): eadi0979, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478629

ABSTRACT

Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , SARS-CoV-2 , Mutation/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
3.
Nat Commun ; 15(1): 1819, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418467

ABSTRACT

Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.


Subject(s)
Amacrine Cells , Receptors, Metabotropic Glutamate , Animals , Mice , Amacrine Cells/physiology , Calcium , Signal Transduction , Dendrites/physiology
4.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405778

ABSTRACT

Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.

5.
J Integr Neurosci ; 22(6): 160, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38176939

ABSTRACT

BACKGROUND: Population voltage imaging is used for studying brain physiology and brain circuits. Using a genetically encoded voltage indicator (GEVI), "VSFP" or "ASAP2s", or a voltage-sensitive dye, Di-4-Anepps, we conducted population voltage imaging in brain slices. The resulting optical signals, optical local field potentials (LFPs), were used to evaluate the performances of the 3 voltage indicators. METHODS: In brain slices prepared from VSFP-transgenic or ASAP2s-transgenic mice, we performed multi-site optical imaging of evoked cortical depolarizations - compound excitatory postsynaptic potentials (cEPSPs). Optical signal amplitudes (ΔF/F) and cEPSP decay rates (OFF rates) were compared using analysis of variance (ANOVA) followed by unpaired Student's t test (31-104 data points per voltage indicator). RESULTS: The ASAP2s signal amplitude (ΔF/F) was on average 3 times greater than Di-4-Anepps, and 7 times greater than VSFP. The optical cEPSP decay (OFF rate) was the slowest in Di-4-Anepps and fastest in ASAP2s. When ASAP2s expression was weak, we observed slow, label-free (autofluorescence, metabolic) optical signals mixed into the ASAP2s traces. Fast hyperpolarizations, that typically follow depolarizing cortical transients (afterhyperpolarizations), were prominent in ASAP2s but not present in the VSFP and Di-4-Anepps experiments. CONCLUSIONS: Experimental applications for ASAP2s may potentially include systems neuroscience studies that require voltage indicators with large signal amplitude (ΔF/F), fast decay times (fast response time is needed for monitoring high frequency brain oscillations), and/or detection of brain patches in transiently hyperpolarized states (afterhyperpolarization).


Subject(s)
Optical Imaging , Pyridinium Compounds , Mice , Animals , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL