Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0282794, 2023.
Article in English | MEDLINE | ID: mdl-36947524

ABSTRACT

The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts (P. arctica, P. delicatissima, P. granii, P. obtusa, P. pungens, and two genotypes of P. seriata), and one represented Fragilariopsis oceanica. During summer, particulate DA (pDA; 4.0 to 130.0 ng L-1) was observed in the Bering Strait and Chukchi Sea where P. obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L-1) occurred along the Beaufort Sea shelf coincident with one P. seriata genotype, and south of the Bering Strait in association with the other P. seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a, and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters.


Subject(s)
Diatoms , Platyhelminths , Animals , Humans , Ecosystem , Alaska , Chlorophyll A , Kainic Acid/analysis , Water/analysis
2.
Harmful Algae ; 120: 102346, 2022 12.
Article in English | MEDLINE | ID: mdl-36470603

ABSTRACT

The harmful algal genus Alexandrium has characteristically been found in temperate and subtropical regions; however recent evidence suggests global warming may be expanding its range into high latitude waters. Alexandrium cysts have previously been documented in the Chukchi Sea and we hypothesize that Alexandrium may be expanding further into the Arctic due to distribution by the Beaufort shelfbreak jet. Here we document the presence of Alexandrium catenella along the Alaskan Beaufort Sea shelf, marking an expansion of its known range. The observations of A. catenella were made using three different methods: FlowCAM imaging, 18S eukaryotic sequencing, and real-time quantitative PCR. Four occupations of a shelf/slope transect spanned the evolution of a strong wind-driven upwelling event over a 5-day period. A nearby mooring provided the physical context for the event, revealing that enhanced easterly winds reversed the Beaufort shelfbreak jet to the west and induced upwelling of colder, denser water onto the outer shelf. A. catenella sequences dominated the surface phytoplankton community at the onset of the upwelling event. This signal vanished during and after the event, likely due to a combination of alongstream advection, cross-stream advection, and wind mixing. These results suggest contrasting physical processes that are both subject to global warming amplification, delivery of warm waters via the Beaufort shelfbreak jet and upwelling, may control the proliferation of this potential harmful alga into the Arctic.


Subject(s)
Dinoflagellida , Phytoplankton , Arctic Regions , Wind
3.
Glob Chang Biol ; 28(9): 2991-3006, 2022 05.
Article in English | MEDLINE | ID: mdl-35048454

ABSTRACT

Hundreds of studies have surveyed plastic debris in surface ocean gyre and convergence zones, however, comprehensive microplastics (MPs, ≤5 mm) assessments beneath these surface accumulation areas are lacking. Using in situ high-volume filtration, Manta net and MultiNet sampling, combined with micro-Fourier-transform-infrared imaging, we discovered a high abundance (up to 244.3 pieces per cubic meter [n m-3 ]) of small microplastics (SMPs, characteristically <100 µm) from the surface to near-sea floor waters of the remote South Atlantic Subtropical Gyre. Large horizontal and vertical variations in the abundances of SMP were observed, displaying inverse vertical trends in some cases. SMP abundances in pump samples were more than two orders of magnitude higher than large microplastics (LMPs, >300 µm) concurrently collected in MultiNet samples. Higher-density polymers (e.g., alkyd resins and polyamide) comprised >65% of the total pump sample count, highlighting a discrepancy between polymer compositions from previous ocean surface-based surveys, typically dominated by buoyant polymers such as polyethylene and polypropylene. Contrary to previous reports stating LMP preferentially accumulated at density gradients, SMP with presumably slower sinking rates are much less influenced by density gradients, thus resulting in a more even vertical distribution in the water column, and potentially longer residence times. Overall, our findings suggest that SMP is a critical and largely underexplored constituent of the oceanic plastic inventory. Additionally, our data support that weak current systems contribute to the formation of SMP hotspots at depth, implying a higher encounter rate for subsurface particle feeders. Our study unveils the prevalence of plastics in the entire water column, highlighting the urgency for more quantification of the deep-ocean MP, particularly the smaller size fraction, to better understand ecosystem exposure and to predict MP fate and impacts.


Subject(s)
Microplastics , Water Pollutants, Chemical , Atlantic Ocean , Ecosystem , Environmental Monitoring , Oceans and Seas , Plastics , Water Pollutants, Chemical/analysis
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607950

ABSTRACT

Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.


Subject(s)
Dinoflagellida/growth & development , Dinoflagellida/metabolism , Harmful Algal Bloom/physiology , Neurotoxins/metabolism , Shellfish Poisoning , Alaska , Arctic Regions , Climate Change , Ecosystem , Geologic Sediments/parasitology , Hot Temperature , Humans , Ice Cover , Public Health
5.
Nat Commun ; 11(1): 5389, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097701

ABSTRACT

Overflow water from the Nordic Seas comprises the deepest limb of the Atlantic Meridional Overturning Circulation, yet questions remain as to where it is ventilated and how it reaches the Greenland-Scotland Ridge. Here we use historical hydrographic data from 2005-2015, together with satellite altimeter data, to elucidate the source regions of the Denmark Strait and Faroe Bank Channel overflows and the pathways feeding these respective sills. A recently-developed metric is used to calculate how similar two water parcels are, based on potential density and potential spicity. This reveals that the interior of the Greenland Sea gyre is the primary wintertime source of the densest portion of both overflows. After subducting, the water progresses southward along several ridge systems towards the Greenland-Scotland Ridge. Kinematic evidence supports the inferred pathways. Extending the calculation back to the 1980s reveals that the ventilation occurred previously along the periphery of the Greenland Sea gyre.

SELECTION OF CITATIONS
SEARCH DETAIL
...