Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 221: 106854, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35567864

ABSTRACT

This paper proposes an encoder-decoder architecture for kidney segmentation. A hyperparameter optimization process is implemented, including the development of a model architecture, selecting a windowing method and a loss function, and data augmentation. The model consists of EfficientNet-B5 as the encoder and a feature pyramid network as the decoder that yields the best performance with a Dice score of 0.969 on the 2019 Kidney and Kidney Tumor Segmentation Challenge dataset. The proposed model is tested with different voxel spacing, anatomical planes, and kidney and tumor volumes. Moreover, case studies are conducted to analyze segmentation outliers. Finally, five-fold cross-validation and the 3D-IRCAD-01 dataset are used to evaluate the developed model in terms of the following evaluation metrics: the Dice score, recall, precision, and the Intersection over Union score. A new development and application of artificial intelligence algorithms to solve image analysis and interpretation will be demonstrated in this paper. Overall, our experiment results show that the proposed kidney segmentation solutions in CT images can be significantly applied to clinical needs to assist surgeons in surgical planning. It enables the calculation of the total kidney volume for kidney function estimation in ADPKD and supports radiologists or doctors in disease diagnoses and disease progression.


Subject(s)
Deep Learning , Artificial Intelligence , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Tomography, X-Ray Computed/methods
2.
Comput Methods Programs Biomed ; 221: 106861, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35588664

ABSTRACT

Previously, doctors interpreted computed tomography (CT) images based on their experience in diagnosing kidney diseases. However, with the rapid increase in CT images, such interpretations were required considerable time and effort, producing inconsistent results. Several novel neural network models were proposed to automatically identify kidney or tumor areas in CT images for solving this problem. In most of these models, only the neural network structure was modified to improve accuracy. However, data pre-processing was also a crucial step in improving the results. This study systematically discussed the necessary pre-processing methods before processing medical images in a neural network model. The experimental results were shown that the proposed pre-processing methods or models significantly improve the accuracy rate compared with the case without data pre-processing. Specifically, the dice score was improved from 0.9436 to 0.9648 for kidney segmentation and 0.7294 for all types of tumor detections. The performance was suitable for clinical applications with lower computational resources based on the proposed medical image processing methods and deep learning models. The cost efficiency and effectiveness were also achieved for automatic kidney volume calculation and tumor detection accurately.


Subject(s)
Deep Learning , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL