Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 37(11): 5341-5353, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37700535

ABSTRACT

BACKGROUND AND AIM: Our previous study has revealed that OEA promotes motor function recovery in the chronic stage of ischemic stroke. However, the neuroprotective mechanism of OEA on motor function recovery after stroke still is unexplored. Therefore, the aim of this study was to explore the effects of OEA treatment on angiogenesis, neurogenesis, and white matter repair in the peri-infarct region after cerebral ischemia. EXPERIMENTAL PROCEDURE: The adult male rats were subjected to 2 h of middle cerebral artery occlusion. The rats were treated with 10 and 30 mg/kg OEA or vehicle daily starting from day 2 after ischemia induction until they were sacrificed. KEY RESULTS AND CONCLUSIONS: The results revealed that OEA increased cortical angiogenesis, neural progenitor cells (NPCs) proliferation, migration, and differentiation. OEA treatment enhanced the survival of newborn neurons and oligodendrogenesis, which eventually repaired the cortical neuronal injury and improved motor function after ischemic stroke. Meanwhile, OEA treatment promoted the differentiation of oligodendrocyte progenitor cells (OPCs) and oligodendrogenesis by activating the PPARα signaling pathway. Our results showed that OEA restores motor function by facilitating cortical angiogenesis, neurogenesis, and white matter repair in rats after ischemic stroke. Therefore, we demonstrate that OEA facilitates functional recovery after ischemic stroke and propose the hypothesis that the long-term application of OEA mitigates the disability after stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , White Matter , Rats , Male , Animals , White Matter/metabolism , PPAR alpha/metabolism , Brain Ischemia/drug therapy , Stroke/drug therapy , Neurogenesis , Cell Differentiation , Oligodendroglia/metabolism
2.
Eur J Med Res ; 28(1): 248, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37481601

ABSTRACT

OBJECTIVE: The latest research proposed a novel copper-dependent programmed cell death named cuproptosis. We aimed to elucidate the influence of cuproptosis in clear cell renal cell carcinoma (ccRCC) from a multi-omic perspective. METHODS: This study systematically assessed mRNA expression, methylation, and genetic alterations of cuproptosis genes in TCGA ccRCC samples. Through unsupervised clustering analysis, the samples were classified as different cuproptosis subtypes, which were verified through NTP method in the E-MTAB-1980 dataset. Next, the cuproptosis score (Cuscore) was computed based on cuproptosis-related genes via PCA. We also evaluated clinical and immunogenomic features, drug sensitivity, immunotherapeutic response, and post-transcriptional regulation. RESULTS: Cuproptosis genes presented multi-layer alterations in ccRCC, and were linked with patients' survival and immune microenvironment. We defined three cuproptosis subtypes [C1 (moderate cuproptosis), C2 (low cuproptosis), and C3 (high cuproptosis)], and the robustness and reproducibility of this classification was further proven. Overall survival was best in C3, moderate in C1, and worst in C2. C1 had the highest sensitivity to pazopanib, and sorafenib, while C2 was most sensitive to sunitinib. Furthermore, C1 patients benefited more from anti-PD-1 immunotherapy. Patients with high Cuscore presented the notable survival advantage. Cuscore was highly linked with immunogenomic features, and post-transcriptional events that contributed to ccRCC development. Finally, several potential compounds and druggable targets (NMU, RARRES1) were selected for low Cuscore group. CONCLUSION: Overall, our study revealed the non-negligible role of cuproptosis in ccRCC development. Evaluation of the cuproptosis subtypes improves our cognition of immunogenomic features and better guides personalized prognostication and precision therapy.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Membrane Proteins , Multiomics , Pharmacogenetics , Reproducibility of Results , Tumor Microenvironment , Copper
3.
BMC Genomics ; 24(1): 414, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488473

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition, and progresses to liver cirrhosis, and even hepatocellular carcinoma. However, the invasive diagnosis of NAFLD with histopathological evaluation remains risky. This study investigated potential genes correlated with NAFLD, which may serve as diagnostic biomarkers and even potential treatment targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was constructed based on dataset E-MEXP-3291. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to evaluate the function of genes. RESULTS: Blue module was positively correlated, and turquoise module negatively correlated with the severity of NAFLD. Furthermore, 8 driving genes (ANXA9, FBXO2, ORAI3, NAGS, C/EBPα, CRYAA, GOLM1, TRIM14) were identified from the overlap of genes in blue module and GSE89632. And another 8 driving genes were identified from the overlap of turquoise module and GSE89632. Among these driving genes, C/EBPα (CCAAT/enhancer binding protein α) was the most notable. By validating the expression of C/EBPα in the liver of NAFLD mice using immunohistochemistry, we discovered a significant upregulation of C/EBPα protein in NAFLD. CONCLUSION: we identified two modules and 16 driving genes associated with the progression of NAFLD, and confirmed the protein expression of C/EBPα, which had been paid little attention to in the context of NAFLD, in the present study. Our study will advance the understanding of NAFLD. Moreover, these driving genes may serve as biomarkers and therapeutic targets of NAFLD.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Mice , Gene Expression Profiling
4.
Stem Cells Dev ; 31(17-18): 529-540, 2022 09.
Article in English | MEDLINE | ID: mdl-35491559

ABSTRACT

Cell-free compounds of mesenchymal stem cells (MSCs) could be a safer and cheaper substitution for MSC transplantation and have gained substantial research interest for antiaging skin treatments. However, whether those bioactive components should be obtained from the cytoplasm or supernatant is yet to be determined. In this study, we examined the ingredients of the MSC cytoplasm extract (MSC-ex) and MSC supernatant (MSC-s) and evaluated their effect in a photoaging model. Although MSC-ex has a richer protein composition than MSC-s, the latter has a proteome associated with wound healing and blood vessel development. Over 85% of the proteins in MSC-s were also found in MSC-ex, including extracellular matrix protein and various growth factors. The results of real-time PCR and western blot also demonstrate that both MSC-s and MSC-ex can upregulate collagen, transforming growth factor ß (TGF-ß), and vascular endothelial growth factor (VEGF) and downregulate IL-1ß and matrix metalloproteinase-1 (MMP-1), which were considered critical for antiphotoaging. This supports our observations in the Hematoxylin and Eosin (HE) and Masson staining assay that they have a comparable effect as MSCs in terms of enhancing dermal thickness, and stimulating collagen regeneration. Although MSC-s and MSC-ex showed a weaker immunosuppression effect than MSCs, moisture measurement showed that they repair damage more rapidly than MSCs. Furthermore, the histological results showed that MSC-s maintains a super effect on immunosuppression, epidermal repair, and angiogenesis. That may be associated with the higher content of laminin, TGF-ß, and VEGF in MSC-s, as well as its super cytokine transcriptional regulation ability. Thus, both MSC-s and MSC-ex can safely and effectively promote the repair of skin light injury, similar to MSCs. Our findings can broaden the range of active factors available in cell-free treatment, determine the difference between MSC-s and MSC-ex, and provide a reference for the development of similar products in regenerative medicine.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Collagen/metabolism , Cytoplasm/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
5.
Life Sci ; 193: 194-199, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29108914

ABSTRACT

Endothelial dysfunction is the main pathogenic mechanism of cardiovascular complications induced by obstructive sleep apnea/hyponea syndrome (OSAHS). Chronic intermittent hypoxia (CIH) is the primary factor of OSAHS-associated endothelial dysfunction. The hypoxia inducible factor (HIF) pathway regulates the expression of downstream target genes and mediates cell apoptosis caused by CIH-induced endothelial injury. miRNAs play extensive and important negative regulatory roles in this process at the post-transcriptional level. However, the regulatory mechanism of miRNAs in CIH tissue models remains unclear. The present study established a mouse aortic endothelial cell model of CIH in an attempt to screen out specific miRNAs by using miRNA chip analysis. It was found that 14 miRNAs were differentially expressed. Of them, 6 were significantly different and verified by quantitative real-time PCR (Q-PCR), of which four were up-regulated and two were down-regulated markedly. To gain an unbiased global perspective on subsequent regulation by altered miRNAs, we established signaling networks by GO to predict the target genes of the 6 miRNAs. It was found that the 6 identified miRNAs were apoptosis- or autophagy-related target genes. Down-regulation of miR-193 inhibits CIH induced endothelial injury and apoptosis- or autophagy-related protein expression. In conclusion, our results showed that CIH could induce differential expression of miRNAs, and alteration in the miRNA expression pattern was associated with the expression of apoptosis- or autophagy-related genes.


Subject(s)
Endothelial Cells/metabolism , Hypoxia/genetics , MicroRNAs/genetics , Animals , Apoptosis/genetics , Autophagy/genetics , Autophagy-Related Proteins/genetics , Disease Models, Animal , Hypoxia/complications , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Signal Transduction , Sleep Apnea, Obstructive/genetics
6.
Life Sci ; 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27515504

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

SELECTION OF CITATIONS
SEARCH DETAIL
...