Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Bioact Mater ; 6(11): 3766-3781, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33898877

ABSTRACT

The mechanism underlying neurogenesis during embryonic spinal cord development involves a specific ligand/receptor interaction, which may be help guide neuroengineering to boost stem cell-based neural regeneration for the structural and functional repair of spinal cord injury. Herein, we hypothesized that supplying spinal cord defects with an exogenous neural network in the NT-3/fibroin-coated gelatin sponge (NF-GS) scaffold might improve tissue repair efficacy. To test this, we engineered tropomyosin receptor kinase C (TrkC)-modified neural stem cell (NSC)-derived neural network tissue with robust viability within an NF-GS scaffold. When NSCs were genetically modified to overexpress TrkC, the NT-3 receptor, a functional neuronal population dominated the neural network tissue. The pro-regenerative niche allowed the long-term survival and phenotypic maintenance of the donor neural network tissue for up to 8 weeks in the injured spinal cord. Additionally, host nerve fibers regenerated into the graft, making synaptic connections with the donor neurons. Accordingly, motor function recovery was significantly improved in rats with spinal cord injury (SCI) that received TrkC-modified NSC-derived neural network tissue transplantation. Together, the results suggested that transplantation of the neural network tissue formed in the 3D bioactive scaffold may represent a valuable approach to study and develop therapies for SCI.

SELECTION OF CITATIONS
SEARCH DETAIL