Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4096, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750019

ABSTRACT

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Succinates , Animals , Humans , Oncolytic Virotherapy/methods , Succinates/pharmacology , Mice , Cell Line, Tumor , Interferon Type I/metabolism , NF-E2-Related Factor 2/metabolism , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Antiviral Agents/pharmacology , NF-kappa B/metabolism , I-kappa B Kinase/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Inflammation/drug therapy , Female , Vesicular stomatitis Indiana virus/physiology , Vesicular stomatitis Indiana virus/drug effects , Signal Transduction/drug effects
2.
Oncogene ; 43(20): 1522-1533, 2024 May.
Article in English | MEDLINE | ID: mdl-38532114

ABSTRACT

Androgen deprivation therapies (ADT) are the mainstay treatments for castration-resistant prostate cancer (CRPC). ADT suppresses the androgen receptor (AR) signaling by blocking androgen biosynthesis or inhibiting AR with antiandrogens that target AR's ligand-binding domain (LBD). However, the ADT's effect is short-lived, as the AR signaling inevitably arises again, which is frequently coupled with AR-V7 overexpression. AR-V7 is a truncated form of AR that lacks the LBD, thus being constitutively active in the absence of androgens and irresponsive to AR-LBD-targeting inhibitors. Though compelling evidence has tied AR-V7 to drug resistance in CRPC, pharmacological inhibition of AR-V7 is still an unmet need. Here, we discovered a small molecule, SC912, which binds to full-length AR as well as AR-V7 through AR N-terminal domain (AR-NTD). This pan-AR targeting relies on the amino acids 507-531 in the AR-NTD. SC912 also disrupted AR-V7 transcriptional activity, impaired AR-V7 nuclear localization and DNA binding. In the AR-V7 positive CRPC cells, SC912 suppressed proliferation, induced cell-cycle arrest, and apoptosis. In the AR-V7 expressing CRPC xenografts, SC912 attenuated tumor growth and antagonized intratumoral AR signaling. Together, these results suggested the therapeutic potential of SC912 for CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Domains , Apoptosis/drug effects , Signal Transduction/drug effects , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use
3.
Virus Res ; 334: 199164, 2023 09.
Article in English | MEDLINE | ID: mdl-37379907

ABSTRACT

Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 µM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Anthracyclines/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/metabolism
4.
Mol Cancer Ther ; 22(5): 570-582, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37139712

ABSTRACT

The current mainstay therapeutic strategy for advanced prostate cancer is to suppress androgen receptor (AR) signaling. However, castration-resistant prostate cancer (CRPC) invariably arises with restored AR signaling activity. To date, the AR ligand-binding domain (LBD) is the only targeted region for all clinically available AR signaling antagonists, such as enzalutamide (ENZ). Major resistance mechanisms have been uncovered to sustain the AR signaling in CRPC despite these treatments, including AR amplification, AR LBD mutants, and the emergence of AR splice variants (AR-Vs) such as AR-V7. AR-V7 is a constitutively active truncated form of AR that lacks the LBD; thus, it can not be inhibited by AR LBD-targeting drugs. Therefore, an approach to inhibit AR through the regions outside of LBD is urgently needed. In this study, we have discovered a novel small molecule SC428, which directly binds to the AR N-terminal domain (NTD) and exhibits pan-AR inhibitory effect. SC428 potently decreased the transactivation of AR-V7, ARv567es, as well as full-length AR (AR-FL) and its LBD mutants. SC428 substantially suppressed androgen-stimulated AR-FL nuclear translocation, chromatin binding, and AR-regulated gene transcription. Moreover, SC428 also significantly attenuated AR-V7-mediated AR signaling that does not rely on androgen, hampered AR-V7 nuclear localization, and disrupted AR-V7 homodimerization. SC428 inhibited in vitro proliferation and in vivo tumor growth of cells that expressed a high level of AR-V7 and were unresponsive to ENZ treatment. Together, these results indicated the potential therapeutic benefits of AR-NTD targeting for overcoming drug resistance in CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgens , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Protein Binding , Cell Line, Tumor
5.
Front Microbiol ; 13: 988944, 2022.
Article in English | MEDLINE | ID: mdl-36532440

ABSTRACT

Human T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ. We show that sHBZ and the less abundant uHBZ isoform interact with nucleolar NPM1/B23 in infected cells and HTLV-1 positive patient cells, unlike equivalent antisense proteins of related non-leukemogenic HTLV-2, -3 and-4 viruses. We further demonstrate that sHBZ association to NPM1/B23 is sensitive to RNase. Interestingly, sHBZ was shown to interact with its own RNA. Through siRNA and overexpression experiments, we further provide evidence that NPM1/B23 acts negatively on viral gene expression with potential impact on cell transformation. Our results hence provide a new insight over HBZ-binding partners in relation to cellular localization and potential function on cell proliferation and should lead to a better understanding of the link between HBZ and ATL development.

6.
Proc Natl Acad Sci U S A ; 119(32): e2204539119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35878012

ABSTRACT

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-ß. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-ß production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Subject(s)
COVID-19 , Carrier Proteins , Interferon Type I , Viral Nonstructural Proteins , COVID-19/genetics , Carrier Proteins/metabolism , Cell Line , Eukaryotic Initiation Factor-4E/metabolism , Humans , Immunity, Innate , Interferon Type I/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virus Replication
7.
J Nat Prod ; 85(5): 1304-1314, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35427111

ABSTRACT

As a plant used in both food and medicine, Sauropus spatulifolius is consumed widely as a natural herbal tea, food source, and Chinese medicine. Inspired by its extensive applications, we conducted a systematic phytochemical study of the leaves of S. spatulifolius. Thirteen new diterpenoids, sauspatulifols A-M (1-13), including four ent-cleistanthane-type diterpenoids (1-4), eight 15,16-di-nor-ent-cleistanthane-type diterpenoids (5-12), and one 17-nor-ent-pimarane-type diterpenoid (13) as well as one known diterpenoid, cleistanthol (14), were isolated. All of these diterpenoids feature a 2α,3α-dihydroxy unit within the A ring, and their structures were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Compound 14 displayed moderate inhibitory activity against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Shigella flexneri with the same minimum inhibitory concentration value of 12 µg/mL as well as activity against vesicular stomatitis virus and influenza A virus.


Subject(s)
Anti-Infective Agents , Diterpenes , Anti-Infective Agents/pharmacology , Diterpenes/chemistry , Molecular Structure , Phytochemicals/pharmacology , Plant Leaves/chemistry
8.
Antiviral Res ; 196: 105209, 2021 12.
Article in English | MEDLINE | ID: mdl-34801588

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of Coronavirus Disease 2019 (COVID-19) pandemic. Despite intensive and global efforts to discover and develop novel antiviral therapies, only Remdesivir has been approved as a treatment for COVID-19. Therefore, effective antiviral therapeutics are still urgently needed to combat and halt the pandemic. Viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 demonstrates high potential as a reliable target for the development of antivirals. We previously developed a cell-based assay to assess the efficiency of compounds that target SARS-CoV-2 RdRp, as well as their tolerance to viral exoribonuclease-mediated proof-reading. In our previous study, we discovered that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides specifically targets the RdRp of both respiratory syncytial virus (RSV) and influenza A virus. Thus, we hypothesize that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides may also have the ability to inhibit SARS-CoV-2 replication by targeting its RdRp activity. In this research, we test a compound library containing 103 of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides against SARS-CoV-2 RdRp, using our cell-based assay. Among these compounds, the top five candidates strongly inhibit SARS-CoV-2 RdRp activity while exhibiting low cytotoxicity and resistance to viral exoribonuclease. Compound 6-72-2a is the most promising candidate with the lowest EC50 value of 1.41 µM and highest selectivity index (CC50/EC50) (above 70.92). Furthermore, our data suggests that 4-46b and 6-72-2a also inhibit the replication of HCoV-OC43 and HCoV-NL63 virus in a dose-dependent manner. Compounds 4-46b and 6-72-2a exhibit EC50 values of 1.13 µM and 0.94 µM, respectively, on HCoV-OC43 viral replication. However, higher concentrations of these compounds are needed to effectively block HCoV-NL63 replication. Together, our findings successfully identified 4-46b and 6-72-2a as promising inhibitors against SARS-CoV-2 RdRp.


Subject(s)
Acetamides/pharmacology , COVID-19 Drug Treatment , RNA-Dependent RNA Polymerase , Antiviral Agents/pharmacology , Drug Delivery Systems , Humans , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/drug effects , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/drug effects , Virus Replication/drug effects
9.
Acta Trop ; 224: 106145, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562426

ABSTRACT

Cerebral malaria (CM) is the most severe neurological complication caused by Plasmodium falciparum infection. The accumulating evidence demonstrated that mast cells (MCs) and its mediators played a critical role in mediating malaria severity. Earlier studies identified that exosomes were emerging as key mediators of intercellular communication and can be released from several kinds of MCs. However, the potential functions and pathological mechanisms of MCs-derived exosomes (MCs-Exo) impacting on CM pathogenesis remain largely unknown. Herein, we utilized an experimental CM (ECM) model (C57BL/6 mice infected with P. berghei ANKA strain), and then intravenously (i.v.) injected MCs-Exo into P. berghei ANKA-infected mice to unfold this mechanism and investigate the effect of MCs-Exo on ECM pathogenies. We also used an in vitro model by investigating the pathogenesis development of brain microvascular endothelial cells line (bEnd.3 cells) co-cultured with P. berghei ANKA blood-stage soluble antigen (PbAg) after MCs-Exo treatment. The higher numbers of MCs and levels of MCs degranulation were observed in skin, cervical lymph node, and brain of ECM mice than those of the uninfected mice. Exosomes were successfully isolated from culture supernatants of mouse MCs line (P815 cells) and characterized by spherical vesicles with the diameter of 30-150 nm, and expression of typical exosomal markers (e.g., CD9, CD63, and CD81). The i.v. injection of MCs-Exo dramatically elevated incidence of ECM in the P. berghei ANKA-infected mice, exacerbated liver and brain histopathological damage, promoted Th1 cytokine response, aggravated brain vascular endothelial activation and blood brain barrier breakdown in ECM mice. In addition, the treatment of MCs-Exo led to the decrease of cells viability and mRNA levels of Ang-1, ZO-1, and Claudin-5, but increase of mRNA levels of Ang-2, CCL2, CXCL1, and CXCL9 in bEnd.3 cells co-cultured with PbAg in vitro. Taken together, our data indicated that MCs-Exo could worsen pathogenesis of ECM in mice.


Subject(s)
Exosomes , Malaria, Cerebral , Animals , Brain , Disease Models, Animal , Endothelial Cells , Mast Cells , Mice , Mice, Inbred C57BL , Plasmodium berghei
11.
Nat Commun ; 12(1): 3299, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083537

ABSTRACT

Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Phenformin/pharmacology , STAT1 Transcription Factor/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Synergism , Electron Transport Complex I/antagonists & inhibitors , Energy Metabolism/drug effects , Female , Glutathione/antagonists & inhibitors , Glutathione/biosynthesis , Humans , Interferon-gamma/administration & dosage , Interferon-gamma/deficiency , Interferon-gamma/metabolism , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/administration & dosage , Oxidative Stress/drug effects , Phenformin/administration & dosage , Poly I-C/administration & dosage , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/agonists , Xenograft Model Antitumor Assays
12.
Antiviral Res ; 190: 105078, 2021 06.
Article in English | MEDLINE | ID: mdl-33894278

ABSTRACT

Antiviral therapeutics is one effective avenue to control and end this devastating COVID-19 pandemic. The viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 has been recognized as a valuable target of antivirals. However, the cell-free SARS-CoV-2 RdRp biochemical assay requires the conversion of nucleotide prodrugs into the active triphosphate forms, which regularly occurs in cells yet is a complicated multiple-step chemical process in vitro, and thus hinders the utility of this cell-free assay in the rapid discovery of RdRp inhibitors. In addition, SARS-CoV-2 exoribonuclease provides the proof-reading capacity to viral RdRp, thus creates relatively high resistance threshold of viral RdRp to nucleotide analog inhibitors, which must be examined and evaluated in the development of this class of antivirals. Here, we report a cell-based assay to evaluate the efficacy of nucleotide analog compounds against SARS-CoV-2 RdRp and assess their tolerance to viral exoribonuclease-mediated proof-reading. By testing seven commonly used nucleotide analog viral polymerase inhibitors, Remdesivir, Molnupiravir, Ribavirin, Favipiravir, Penciclovir, Entecavir and Tenofovir, we found that both Molnupiravir and Remdesivir showed the strong inhibition of SARS-CoV-2 RdRp, with EC50 value of 0.22 µM and 0.67 µM, respectively. Moreover, our results suggested that exoribonuclease nsp14 increases resistance of SARS-CoV-2 RdRp to nucleotide analog inhibitors. We also determined that Remdesivir presented the highest resistance to viral exoribonuclease activity in cells. Therefore, we have developed a cell-based SARS-CoV-2 RdRp assay which can be deployed to discover SARS-CoV-2 RdRp inhibitors that are urgently needed to treat COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , A549 Cells , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , COVID-19/virology , Cell Survival/drug effects , Exoribonucleases/antagonists & inhibitors , HEK293 Cells , High-Throughput Screening Assays , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/antagonists & inhibitors
13.
Mol Cell ; 81(6): 1187-1199.e5, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33581076

ABSTRACT

Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-ß production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-ß induction, prompting a negative feedback regulatory mechanism that represses IFN-ß expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.


Subject(s)
Eukaryotic Initiation Factor-4E/immunology , Immunity, Innate , MicroRNAs/immunology , Protein Biosynthesis/immunology , RNA Virus Infections/immunology , RNA Viruses/immunology , Animals , Eukaryotic Initiation Factor-4E/genetics , HEK293 Cells , Humans , Interferon-beta/genetics , Interferon-beta/immunology , Mice , Mice, Transgenic , MicroRNAs/genetics , RNA Virus Infections/genetics , RNA Viruses/genetics
14.
Article in English | MEDLINE | ID: mdl-31552201

ABSTRACT

Malaria, a mosquito-borne infectious disease, is a severe health problem worldwide. As reported, some anti-malarial drugs with anti-parasitic properties also block mast cells (MCs) activities. It is hypothesized that MCs activity may be correlated with the pathogenesis of malaria. Thus, the role of MCs on malarial pathogenesis and the involved physiological action and pathways need to be further investigated. This study aimed to investigate the effect of MCs activation on malaria disease severity using KunMing mice with Plasmodium berghei ANKA (PbANKA) infection treated with MCs degranulator (compound 48/80, C48/80) or MCs stabilizer (disodium cromoglycate, DSCG). PbANKA infection caused a dramatic increase in MCs density and level of MCs degranulation in cervical lymph node (CLN) and skin. Compared with infected control, C48/80 treatment had shortened survival time, increased parasitemia, exacerbated liver inflammation and CLN hyperplasia, accompanied with increase in vascular leakage and leukocyte number. The infected mice with C48/80 treatment also elevated the release of CCL2, CXCL1, and MMP-9 from MCs in CLN and skin, and TNF-α, IFN-γ, CCR2, and CXCR2 mRNA expression in CLN and liver. In contrast, the infected mice treated with DSCG showed longer survival time, lower parasitemia, improved liver inflammation and CLN hyperplasia, followed by a decline of vascular leakage and leukocyte number. Decreased MCs-derived CCL2, CXCL1, and MMP-9 from CLN and skin, mRNA expression in CLN and liver (TNF-α, IFN-γ, CCR2, and CXCR2) were also observed in infected mice with DSCG treatment. Our data indicated that MCs activation may facilitate the pathogenesis of PbANKA infection.


Subject(s)
Malaria/physiopathology , Mast Cells/immunology , Plasmodium berghei/immunology , Animals , Cromolyn Sodium/administration & dosage , Cytokines/analysis , Disease Models, Animal , Immunologic Factors/administration & dosage , Lymph Nodes/pathology , Malaria/parasitology , Malaria/pathology , Mast Cells/drug effects , Mice , Parasitemia , Skin/pathology , Survival Analysis , p-Methoxy-N-methylphenethylamine/administration & dosage
15.
Cell Host Microbe ; 26(3): 369-384.e8, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31513772

ABSTRACT

Pathogen pattern recognition receptors (PRRs) trigger innate immune responses to invading pathogens. All known PRRs for viral RNA have extranuclear localization. However, for many viruses, replication generates dsRNA in the nucleus. Here, we show that the nuclear matrix protein SAFA (also known as HnRNPU) functions as a nuclear viral dsRNA sensor for both DNA and RNA viruses. Upon recognition of viral dsRNA, SAFA oligomerizes and activates the enhancers of antiviral genes, including IFNB1. Moreover, SAFA is required for the activation of super-enhancers, which direct vigorous immune gene transcription to establish the antiviral state. Myeloid-specific SAFA-deficient mice were more susceptible to lethal HSV-1 and VSV infection, with decreased type I IFNs. Thus, SAFA functions as a nuclear viral RNA sensor and trans-activator to bridge innate sensing with chromatin remodeling and potentiate robust antiviral responses.


Subject(s)
Antiviral Agents/immunology , Heterogeneous-Nuclear Ribonucleoprotein U/immunology , Nuclear Matrix-Associated Proteins/immunology , RNA, Viral/metabolism , Receptors, Pattern Recognition/immunology , Adenosine Triphosphatases/genetics , Animals , Chromosomal Proteins, Non-Histone/genetics , DNA Topoisomerases, Type I/genetics , DNA Viruses , HEK293 Cells , HeLa Cells , Herpesvirus 1, Human , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Interferon Regulatory Factor-3 , Interferon Regulatory Factor-7 , Mice , Nuclear Matrix-Associated Proteins/metabolism , Protein Serine-Threonine Kinases , RNA Viruses , RNA, Double-Stranded , Viruses
17.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31243131

ABSTRACT

Current combination antiretroviral therapies (cART) are unable to eradicate HIV-1 from infected individuals because of the establishment of proviral latency in long-lived cellular reservoirs. The shock-and-kill approach aims to reactivate viral replication from the latent state (shock) using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells (kill) by specific therapeutics. The NF-κB RelA/p50 heterodimer has been characterized as an essential component of reactivation of the latent HIV-1 long terminal repeat (LTR). Nevertheless, prolonged NF-κB activation contributes to the development of various autoimmune, inflammatory, and malignant disorders. In the present study, we established a cellular model of HIV-1 latency in J-Lat CD4+ T cells that stably expressed the NF-κB superrepressor IκB-α 2NΔ4 and demonstrate that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivated HIV-1 from latency, even under conditions where NF-κB activation was repressed. Using specific calcineurin phosphatase, p38, and MEK1/MEK2 kinase inhibitors or specific short hairpin RNAs, c-Jun was identified to be an essential factor binding to the LTR enhancer κB sites and mediating the combined synergistic reactivation effect. Furthermore, acetylsalicylic acid (ASA), a potent inhibitor of the NF-κB activator kinase IκB kinase ß (IKK-ß), did not significantly diminish reactivation in a primary CD4+ T central memory (TCM) cell latency model. The present work demonstrates that the shock phase of the shock-and-kill approach to reverse HIV-1 latency may be achieved in the absence of NF-κB, with the potential to avoid unwanted autoimmune- and or inflammation-related side effects associated with latency-reversing strategies.IMPORTANCE The shock-and-kill approach consists of the reactivation of HIV-1 replication from latency using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells. The cellular transcription factor NF-κB is considered a master mediator of HIV-1 escape from latency induced by LRAs. Nevertheless, a systemic activation of NF-κB in HIV-1-infected patients resulting from the combined administration of different LRAs could represent a potential risk, especially in the case of a prolonged treatment. We demonstrate here that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivate HIV-1 from latency, even under conditions where NF-κB activation is repressed. Our study provides a molecular proof of concept for the use of anti-inflammatory drugs, like aspirin, capable of inhibiting NF-κB in patients under combination antiretroviral therapy during the shock-and-kill approach, to avoid potential autoimmune and inflammatory disorders that can be elicited by combinations of LRAs.


Subject(s)
HIV-1/drug effects , Virus Activation/drug effects , Virus Latency/drug effects , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Viral/genetics , HIV Infections/virology , HIV Seropositivity/immunology , HIV-1/physiology , Humans , Jurkat Cells , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Proviruses/drug effects , Proviruses/physiology , Receptors, Immunologic/metabolism , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Virus Replication/drug effects
18.
Proc Natl Acad Sci U S A ; 115(33): E7768-E7775, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061387

ABSTRACT

The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.


Subject(s)
Fatty Acids/metabolism , Herpes Simplex/metabolism , Herpesvirus 2, Human/metabolism , Membrane Proteins/metabolism , Signal Transduction , Animals , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/metabolism , Autoimmune Diseases of the Nervous System/pathology , Herpes Simplex/genetics , Herpes Simplex/pathology , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Lipoylation , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Membrane Proteins/genetics , Mice , Mice, Knockout , Nervous System Malformations/genetics , Nervous System Malformations/metabolism , Nervous System Malformations/pathology , RAW 264.7 Cells
19.
Nat Commun ; 9(1): 3506, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158636

ABSTRACT

The transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells. Here, Nrf2 activation decreases STING expression and responsiveness to STING agonists while increasing susceptibility to infection with DNA viruses. Mechanistically, Nrf2 regulates STING expression by decreasing STING mRNA stability. Repression of STING by Nrf2 occurs in metabolically reprogrammed cells following TLR4/7 engagement, and is inducible by a cell-permeable derivative of the TCA-cycle-derived metabolite itaconate (4-octyl-itaconate, 4-OI). Additionally, engagement of this pathway by 4-OI or the Nrf2 inducer sulforaphane is sufficient to repress STING expression and type I IFN production in cells from patients with STING-dependent interferonopathies. We propose Nrf2 inducers as a future treatment option in STING-dependent inflammatory diseases.


Subject(s)
Membrane Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , DNA Viruses/metabolism , Gene Expression/drug effects , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , Mice , NF-E2-Related Factor 2/genetics , RAW 264.7 Cells , RNA, Messenger/metabolism , Succinates/pharmacology
20.
Nat Commun ; 9(1): 2329, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899553

ABSTRACT

The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b-/-, like Sting-/- mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b+/+ littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b-/- primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses.


Subject(s)
Blood Proteins/immunology , Membrane Proteins/immunology , Animals , Blood Proteins/deficiency , Blood Proteins/genetics , Cells, Cultured , Female , HEK293 Cells , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Humans , Interferon Type I/biosynthesis , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vesiculovirus/immunology , Vesiculovirus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...