Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 12(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35888168

ABSTRACT

BACKGROUND AND AIM: This study evaluates the upper airway flow characteristics, anatomical features and analyzes their correlations with AHI in patients with varied degrees of OSA severity seeking for discernments of the underlying pathophysiological profile. MATERIALS AND METHODS: Patient-specific computational fluid dynamics models were reconstructed from high-resolution cone-beam computed tomography images for 4 OSA patients classified as minimal, mild, moderate, and severe according to AHI. RESULTS: The parameters, minimal cross-sectional area (MCA), and the pharyngeal airway volume did not show clear correlations with the OSA severity defined according to AHI. No correlations were found between the classically defined resistance of the airway in terms of pressure drop and AHI. The flow analysis further showed that the fluid mechanisms likely to cause airway collapse are associated with the degree of narrowing in the pharyngeal airway rather than AHI. Results also suggested that some patients classified as severe OSA according to the AHI can show less susceptibility to airway collapse than patients with relatively lower AHI values and vice versa. CONCLUSIONS: The relative contribution of anatomical and non-anatomical causes to the OSA severity can significantly vary between patients. AHI alone is inadequate to be used as a marker of the pathophysiological profile of OSA. Combining airflow analysis with AHI in diagnosing OSA severity may provide additional details about the underlying pathophysiology, subsequently improving the individualized clinical outcomes.

2.
Nanotechnol Rev ; 9(1): 1217-1226, 2020.
Article in English | MEDLINE | ID: mdl-34012762

ABSTRACT

In this work, a strain-based degradation model was implemented and validated to better understand the dynamic interactions between the bioresorbable vascular scaffold (BVS) and the artery during the degradation process. Integrating the strain-modulated degradation equation into commercial finite element codes allows a better control and visualization of local mechanical parameters. Both strut thinning and discontinuity of the stent struts within an artery were captured and visualized. The predicted results in terms of mass loss and fracture locations were validated by the documented experimental observations. In addition, results suggested that the heterogeneous degradation of the stent depends on its strain distribution following deployment. Degradation is faster at the locations with higher strains and resulted in the strut thinning and discontinuity, which contributes to the continuous mass loss, and the reduced contact force between the BVS and artery. A nonlinear relationship between the maximum principal strain of the stent and the fracture time was obtained, which could be transformed to predict the degradation process of the BVS in different mechanical environments. The developed computational model provided more insights into the degradation process, which could complement the discrete experimental data for improving the design and clinical management of the BVS.

3.
Biomech Model Mechanobiol ; 17(4): 951-959, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29404724

ABSTRACT

Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell-substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell mechanosensing. We showed that cell spread area, traction force on a substrate, as well as the average stress of a cell were increased in response to a stiffer substrate. However, the cell average strain, which is cell type-specific, was kept at the same level regardless of the substrate stiffness. This indicated that the cell average strain is the tensional homeostasis that each type of cell tries to maintain. Furthermore, cell contraction in terms of eigenstrain was found to be the same for both BAECs and fibroblast cells in different mechanical environments. This implied a potential mechanical set-point across different cell types. Our results suggest that additional measurements of contractility might be useful for monitoring cell mechanosensing as well as dynamic remodeling of the extracellular matrix (ECM). This work could help to advance the understanding of the cell-ECM relationship, leading to better regenerative strategies.


Subject(s)
Endothelial Cells/cytology , Stress, Mechanical , Animals , Aorta/cytology , Biomechanical Phenomena , Cattle , Cells, Cultured , Models, Biological
4.
Biomed Res Int ; 2017: 7023078, 2017.
Article in English | MEDLINE | ID: mdl-28321413

ABSTRACT

In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that the accuracy of CSS prediction depends on the applied pressure profile for the aneurysm sac. A large pressure drop across AAA usually led to the underestimation of wall stresses and thus the AAA rupture. Moreover, the assumed isotropic AAA wall properties, compared to the anisotropic one, will aggravate the difference between the simplified models with the FSI approach. The present work demonstrated the importance of modeling techniques on predicting the blood flow dynamics and wall mechanics of the AAA, which could guide the selection of appropriate modeling technique for significant clinical implications.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Aortic Rupture/physiopathology , Models, Cardiovascular , Female , Humans , Male
6.
Biofabrication ; 8(3): 032002, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27658612

ABSTRACT

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction.


Subject(s)
Bioprinting/instrumentation , Printing, Three-Dimensional , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering , Tissue Scaffolds/chemistry
7.
Comput Math Methods Med ; 2015: 928236, 2015.
Article in English | MEDLINE | ID: mdl-26495036

ABSTRACT

Cerebral vasculature is a complex network that circulates blood through the brain. However, the role of this networking effect in brain dynamics has seldom been inspected. This work is to study the effects of blood vessel networks on dynamic responses of the brain under blast loading. Voronoi tessellations were implemented to represent the network of blood vessels in the brain. The brain dynamics in terms of maximum principal strain (MPS), shear strain (SS), and intracranial pressure (ICP) were monitored and compared. Results show that blood vessel networks significantly affected brain responses. The increased MPS and SS were observed within the brain embedded with vessel networks, which did not exist in the case without blood vessel networks. It is interesting to observe that the alternation of the ICP response was minimal. Moreover, the vessel diameter and density also affected brain dynamics in both MPS and SS measures. This work sheds light on the role of cerebral vasculature in blast-induced traumatic brain injury.


Subject(s)
Blast Injuries/etiology , Blast Injuries/physiopathology , Brain Injuries/etiology , Brain Injuries/physiopathology , Brain/blood supply , Models, Neurological , Biomechanical Phenomena , Blast Injuries/pathology , Brain/pathology , Brain Injuries/pathology , Cerebrovascular Circulation/physiology , Computer Simulation , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Models, Anatomic , Models, Cardiovascular
8.
Materials (Basel) ; 8(2): 551-560, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-28787956

ABSTRACT

The mechanical properties of type I collagen gel vary due to different polymerization parameters. In this work, the role of crosslinks in terms of density and stiffness on the macroscopic behavior of collagen gel were investigated through computational modeling. The collagen fiber network was developed in a representative volume element, which used the inter-fiber spacing to regulate the crosslink density. The obtained tensile behavior of collagen gel was validated against published experimental data. Results suggest that the cross-linked fiber alignment dominated the strain stiffening effect of the collagen gel. In addition, the gel stiffness was enhanced approximately 40 times as the crosslink density doubled. The non-affine deformation was reduced with the increased crosslink density. A positive bilinear correlation between the crosslink density and gel stiffness was obtained. On the other hand, the crosslink stiffness had much less impact on the gel stiffness. This work could enhance our understanding of collagen gel mechanics and shed lights on designing future clinical relevant biomaterials with better control of polymerization parameters.

9.
Materials (Basel) ; 8(8): 5376-5384, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-28793511

ABSTRACT

Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

SELECTION OF CITATIONS
SEARCH DETAIL