Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Publication year range
1.
Nat Cell Biol ; 26(6): 878-891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783142

ABSTRACT

When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.


Subject(s)
Autophagy , DNA, Mitochondrial , DNA-Binding Proteins , Inflammation , Mitochondria , Mitochondrial Proteins , Transcription Factors , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Animals , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Protein Binding , Cytoplasm/metabolism , Lysosomes/metabolism , Signal Transduction , HEK293 Cells , Mice, Inbred C57BL , High Mobility Group Proteins
3.
Mol Psychiatry ; 28(3): 1219-1231, 2023 03.
Article in English | MEDLINE | ID: mdl-36604604

ABSTRACT

ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Animals , Humans , Mice , Attention Deficit Disorder with Hyperactivity/metabolism , Endosomes/metabolism , Protein Transport , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
4.
Theranostics ; 11(2): 974-995, 2021.
Article in English | MEDLINE | ID: mdl-33391516

ABSTRACT

Membrane contact sites (MCSs) are defined as regions where two organelles are closely apposed, and most MCSs associated with each other via protein-protein or protein-lipid interactions. A number of key molecular machinery systems participate in mediating substance exchange and signal transduction, both of which are essential processes in terms of cellular physiology and pathophysiology. The endoplasmic reticulum (ER) is the largest reticulum network within the cell and has extensive communication with other cellular organelles, including the plasma membrane (PM), mitochondria, Golgi, endosomes and lipid droplets (LDs). The contacts and reactions between them are largely mediated by various protein tethers and lipids. Ions, lipids and even proteins can be transported between the ER and neighboring organelles or recruited to the contact site to exert their functions. This review focuses on the key molecules involved in the formation of different contact sites as well as their biological functions.


Subject(s)
Cell Membrane/metabolism , Cell Physiological Phenomena , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Intracellular Membranes/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Animals , Biological Transport , Humans , Lipid Metabolism
5.
Cell Stress ; 3(5): 141-161, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31225510

ABSTRACT

Autophagy (here refers to macroautophagy) is a catabolic pathway by which large protein aggregates and damaged organelles are first sequestered into a double-membraned structure called autophago-some and then delivered to lysosome for destruction. Recently, tremen-dous progress has been made to elucidate the molecular mechanism and functions of this essential cellular metabolic process. In addition to being either a rubbish clearing system or a cellular surviving program in response to different stresses, autophagy plays important roles in a large number of pathophysiological conditions, such as cancer, diabetes, and especially neurodegenerative disorders. Here we review recent progress in the role of autophagy in neurological diseases and discuss how dysregulation of autophagy initiation, autophagosome formation, maturation, and/or au-tophagosome-lysosomal fusion step contributes to the pathogenesis of these disorders in the nervous system.

6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 19(1): 175-7, 2002 Jan.
Article in Chinese | MEDLINE | ID: mdl-11951512

ABSTRACT

A new microwave applicator for intracavitary hyperthermia treatment of uterocervical cancer has been designed and tested. Compared with the traditional microwave applicators, the exposed inner conductor of this applicator is replaced by a cone-helical antenna with the reflect shade. We confirm that the heat pattern of the applicator is shifted towards the tip in muscle tissue equivalent phantom material. The result indicates that this new applicator may play an important role in clinical use for treatment.


Subject(s)
Hyperthermia, Induced/instrumentation , Microwaves/therapeutic use , Uterine Cervical Neoplasms/therapy , Equipment Design , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL