Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Animals (Basel) ; 14(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38997978

ABSTRACT

Pain localised to the metacarpophalangeal (MCP) and metatarsophalangeal (MTP) region represents a frequent cause of lameness in sport horses, and standing magnetic resonance imaging (MRI) of these regions is increasingly being acquired. This multicentre retrospective study describes the ranges of abnormalities identified on standing MRI of the MCP/MTP region and compares patterns of abnormalities between forelimbs, hindlimbs and different sports disciplines. In total, 341 MRI reports were reviewed. Subchondral bone plate irregularities, condylar and proximal phalanx pathologies were frequently identified with subchondral bone defect, sclerosis and increased intensity on STIR images often described. Medial pathology was frequently identified in the forelimbs, and more lateral pathology was reported in the hindlimbs, which could potentially reflect differences in the loading patterns. Significant differences in MRI findings were found between different sports activities, with MCP/MTP bone pathology occurring more frequently in MRI reports from race and endurance horses and MCP/MTP soft tissue injuries being reported more frequently in dressage and show-jumping horses, particularly in the suspensory apparatus, including the distal sesamoidean ligaments. The findings of this study identify patterns of MCP/MTP abnormalities detected using standing MRI, with differences seen between forelimbs and hindlimbs and between different sports disciplines.

2.
Animals (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998057

ABSTRACT

Information regarding the histopathology of the proximal phalanx (P1) sagittal groove in racehorses is limited. Twenty-nine cadaver limbs from nine Thoroughbred racehorses in racing/race-training underwent histological examination. Histological specimens of the third metacarpal/metatarsal (MC3/MT3) parasagittal grooves and P1 sagittal grooves were graded for histopathological findings in hyaline cartilage (HC), calcified cartilage (CC), and subchondral plate and trabecular bone (SCB/TB) regions. Histopathological grades were compared between (1) fissure and non-fissure locations observed in a previous study and (2) dorsal, middle, and palmar/plantar aspects. (1) HC, CC, and SCB/TB grades were more severe in fissure than non-fissure locations in the MC3/MT3 parasagittal groove (p < 0.001). SCB/TB grades were more severe in fissure than non-fissure locations in the P1 sagittal groove (p < 0.001). (2) HC, CC, and SCB/TB grades including SCB collapse were more severe in the palmar/plantar than the middle aspect of the MC3/MT3 parasagittal groove (p < 0.001). SCB/TB grades including SCB collapse were more severe in the dorsal and middle than the palmar/plantar aspect of the P1 sagittal groove (p < 0.001). Histopathology in the SCB/TB region including bone fatigue injury was related to fissure locations, the palmar/plantar MC3/MT3 parasagittal groove, and the dorsal P1 sagittal groove.

3.
Neuron ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38955183

ABSTRACT

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

4.
Equine Vet J ; 56(3): 484-493, 2024 May.
Article in English | MEDLINE | ID: mdl-37488678

ABSTRACT

BACKGROUND: Dorsoproximal osteochondral defects commonly affect the proximal phalanx, but information about diagnosis on computed tomography (CT) and magnetic resonance imaging (MRI) is limited. OBJECTIVES: To assess CT and MRI diagnoses of osteochondral defects, describe the lesions and compare sensitivity and specificity of the modalities using macroscopic pathology as gold standard. STUDY DESIGN: Cross-sectional study. METHODS: Thirty-five equine cadaver limbs underwent standing cone-beam CT (CBCT), fan-beam CT (FBCT), low-field MRI and pathological examination. CT and MR images were examined for proximal phalanx dorsomedial and dorsolateral eminence osteochondral defects. Defect dimensions were measured. Imaging diagnoses and measurements were compared with macroscopic examination. RESULTS: Fifty-six defects were seen over 70 potential locations. On CBCT and FBCT, osteochondral defects appeared as subchondral irregularity/saucer-shaped defects. On MRI, osteochondral defects were a combination of articular cartilage defect on dorsal images and subchondral flattening/irregularity on sagittal images. Subchondral thickening and osseous short tau inversion recovery hyperintensity were found concurrent with osteochondral defects. Compared with pathological examination, the sensitivity and specificity of diagnosis were 86% (95% confidence interval [95% CI] 75%-93%) and 64% (95% CI 38%-85%) for FBCT; 64% (95% CI 51%-76%) and 71% (95% CI 46%-90%) for CBCT; and 52% (95% CI 39%-65%) and 71% (95% CI 46%-90%) for MRI. Sensitivity of all modalities increased with defect size. Macroscopic defect dimensions were strongly correlated with CBCT (r = 0.76, p < 0.001) and moderately correlated with FBCT and MRI (r = 0.65, p < 0.001). Macroscopic measurements were significantly greater than all imaging modality dimensions (p < 0.001), potentially because macroscopy included articular cartilage pathology. MAIN LIMITATIONS: Influence of motion artefact could not be assessed. CONCLUSIONS: Osteochondral defects could be visualised using both CT and MRI with sensitivity increasing with defect size. Diagnostic performance was best using FBCT, followed by CBCT then MRI, but CBCT-measured defect size best correlated with macroscopic examination. MRI provided useful information on fluid signal associated with defects, which could represent active pathology.


Subject(s)
Cartilage, Articular , Tomography, X-Ray Computed , Animals , Horses , Cross-Sectional Studies , Tomography, X-Ray Computed/veterinary , Cartilage, Articular/pathology , Cone-Beam Computed Tomography/veterinary , Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging/veterinary
5.
Equine Vet J ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37931621

ABSTRACT

BACKGROUND: Palmar/plantar osteochondral disease (POD) of the metacarpal/tarsal condyles is a common pathological finding in racehorses. OBJECTIVE: To compare diagnoses, imaging details, and measurements of POD lesions between cone-beam computed tomography CT (CBCT), fan-beam CT (FBCT), and low-field magnetic resonance imaging (MRI) using macroscopic pathology as a gold standard. STUDY DESIGN: Cross-sectional study. METHODS: Thirty-five cadaver limbs from 10 horses underwent CBCT, FBCT, MRI, and macroscopic examination. CT and MR images were examined for presence of POD, imaging details of POD, and measurements of POD dimensions and areas. Imaging diagnoses, details, and measurements were compared with macroscopic examination and between modalities. RESULTS: Forty-eight POD lesions were seen over 70 condyles. Compared with macroscopic examination the sensitivity and specificity of diagnosis were 95.8% (CI95 = 88%-99%) and 63.6% (CI95 = 43%-81%) for FBCT, 85.4% (CI95 = 74%-94%) and 81.8% (CI95 = 63%-94%) for CBCT, and 69.0% (CI95 = 54%-82%) and 71.4% (CI95 = 46%-90%) for MRI. Inter-modality agreement on diagnosis was moderate between CBCT and FBCT (κ = 0.56, p < 0.001). POD was identified on CT as hypoattenuating lesions with surrounding hyperattenuation and on MRI as either T1W, T2*W, T2W, and STIR hyperintense lesions or T1W and T2*W heterogeneous hypointense lesions with surrounding hypointensity. Agreement on imaging details between CBCT and FBCT was substantial for subchondral irregularity (κ = 0.61, p < 0.001). Macroscopic POD width strongly correlated with MRI (r = 0.81, p < 0.001) and CBCT (r = 0.79, p < 0.001) and moderately correlated with FBCT (r = 0.69, p < 0.001). Macroscopic POD width was greater than all imaging modality (p < 0.001). MAIN LIMITATIONS: Effect of motion artefact in live horse imaging could not be assessed. CONCLUSIONS: All imaging modalities were able to detect POD lesions, but underestimated lesion size. The CT systems were more sensitive, but the differing patterns of signal intensity may suggest that MRI can detect changes associated with POD pathological status or severity. The image features observed by CBCT and FBCT were similar.

6.
Animals (Basel) ; 13(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37760312

ABSTRACT

Fissure in the third metacarpal/tarsal parasagittal groove and proximal phalanx sagittal groove is a potential prodromal pathology of fracture; therefore, early identification and characterisation of fissures using non-invasive imaging could be of clinical value. Thirty-three equine cadaver limbs underwent standing cone-beam (CB) computed tomography (CT), fan-beam (FB) CT, low-field magnetic resonance imaging (MRI), and macro/histo-pathological examination. Imaging diagnoses of fissures were compared to microscopic examination. Imaging features of fissures were described. Histopathological findings were scored and compared between locations with and without fissures on CT. Microscopic examination identified 114/291 locations with fissures. The diagnostic sensitivity and specificity were 88.5% and 61.3% for CBCT, 84.1% and 72.3% for FBCT, and 43.6% and 85.2% for MRI. Four types of imaging features of fissures were characterised on CT: (1) CBCT/FBCT hypoattenuating linear defects, (2) CBCT/FBCT striated hypoattenuated lines, (3) CBCT/FBCT subchondral irregularity, and (4) CBCT striated hypoattenuating lines and FBCT subchondral irregularity. Fissures on MRI appeared as subchondral bone hypo-/hyperintense defects. Microscopic scores of subchondral bone sclerosis, microcracks, and collapse were significantly higher in locations with CT-identified fissures. All imaging modalities were able to identify fissures. Fissures identified on CT were associated with histopathology of fatigue injuries.

7.
J Equine Vet Sci ; 126: 104252, 2023 07.
Article in English | MEDLINE | ID: mdl-36796738

ABSTRACT

Heterotopic mineralization in equine distal limbs has been considered an incidental finding and little is known about its imaging features. The study aimed to identify heterotopic mineralization and adjacent pathology in the fetlock region with cone-beam (CB) computed tomography (CT), fan-beam (FB) CT, and low-field magnetic resonance imaging (MRI). Images from 12 equine cadaver limbs were examined for heterotopic mineralization and adjacent pathology and verified by macro-examination. Retrospective review of the CBCT/MR images from 2 standing horses was also included. CBCT and FBCT identified twelve mineralization's with homogeneous hyperattenuation: oblique-sesamoidean-ligament (5) without macroscopic abnormality; deep-digital-flexor-tendon (1) and suspensory-branch (6) with macroscopic abnormalities. MRI failed to identify all mineralization's, but detected suspensory branch splitting, and T2 and STIR hyperintensity in 4 suspensory-branches and 3 oblique-sesamoidean-ligaments. Macro-examination found corresponding disruption/splitting and discoloration. All modalities identified 7 ossified fragments showing cortical/trabecular pattern: capsular (1), palmar sagittal ridge (1), proximal phalanx (2) without macroscopic abnormality, and proximal sesamoid bones (3). On MRI, fragments were most identifiable on T1 images. All abaxial avulsions had suspensory-branch splitting on T1 images with T2 and STIR hyperintensity. Macro-examination showed ligament disruption/splitting and discoloration. Suspensory-branch/intersesamoidean ligament mineralization's were identified by CBCT in standing cases; 1 had associated T2 hyperintensity. Both CT systems were generally superior in identifying heterotopic mineralization's than MRI, while MRI provided information on soft tissue pathology related to the lesions, which may be important for management.


Subject(s)
Horse Diseases , Horses , Animals , Horse Diseases/diagnosis , Joints/pathology , Bone and Bones/pathology , Tomography, X-Ray Computed/veterinary , Magnetic Resonance Imaging/veterinary
8.
Biomicrofluidics ; 10(3): 034118, 2016 May.
Article in English | MEDLINE | ID: mdl-27462379

ABSTRACT

This article unveils the development of a paper-based analytical device designed to rapidly detect and clinically diagnose paraquat (PQ) poisoning. Using wax printing technology, we fabricated a PQ detection device by pattering hydrophobic boundaries on paper. This PQ detection device employs a colorimetric sodium dithionite assay or an ascorbic acid assay to indicate the PQ level in a buffer system or in a human serum system in 10 min. In this test, colorimetric changes, blue in color, were observable with the naked eye. By curve fitting models of sodium dithionite and ascorbic acid assays in normal human serum, we evaluated serum PQ levels for five PQ-poisoned patients before hemoperfusion (HP) treatment and one PQ-poisoned patient after HP treatment. As evidenced by similar detection outcomes, the analytical performance of our device can compete with that of the highest clinical standard, i.e., spectrophotometry, with less complicated sample preparation and with more rapid results. Accordingly, we believe that our rapid PQ detection can benefit physicians determining timely treatment strategies for PQ-poisoned patients once they are taken to hospitals, and that this approach will increase survival rates.

9.
J Cell Mol Med ; 19(4): 744-59, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25639359

ABSTRACT

Mitochondria are key organelles in mammary cells in responsible for a number of cellular functions including cell survival and energy metabolism. Moreover, mitochondria are one of the major targets under doxorubicin treatment. In this study, low-abundant mitochondrial proteins were enriched for proteomic analysis with the state-of-the-art two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assistant laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) strategy to compare and identify the mitochondrial protein profiling changes in response to the development of doxorubicin resistance in human uterine cancer cells. The mitochondrial proteomic results demonstrate more than fifteen hundred protein features were resolved from the equal amount pooled of three purified mitochondrial proteins and 101 differentially expressed spots were identified. In which, 39 out of these 101 identified proteins belong to mitochondrial proteins. Mitochondrial proteins such as acetyl-CoA acetyltransferase (ACAT1) and malate dehydrogenase (MDH2) have not been reported with the roles on the formation of doxorubicin resistance in our knowledge. Further studies have used RNA interference and cell viability analysis to evidence the essential roles of ACAT1 and MDH2 on their potency in the formation of doxorubicin resistance through increased cell viability and decreased cell apoptosis during doxorubicin treatment. To sum up, our current mitochondrial proteomic approaches allowed us to identify numerous proteins, including ACAT1 and MDH2, involved in various drug-resistance-forming mechanisms. Our results provide potential diagnostic markers and therapeutic candidates for the treatment of doxorubicin-resistant uterine cancer.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Malate Dehydrogenase/metabolism , Mitochondrial Proteins/metabolism , Proteome/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Immunoblotting , Malate Dehydrogenase/genetics , Mitochondrial Proteins/genetics , Proteome/genetics , Proteomics/methods , RNA Interference , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
11.
Cell Mol Life Sci ; 72(12): 2395-409, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25596698

ABSTRACT

Chemotherapy is one of the major categories of medical oncology and a primary tumor treatment; however, the effectiveness of chemotherapy is restricted by drug resistance. Overcoming resistance to chemotherapy and investigating molecular targeted therapies are challenges currently faced during resistance management. Progesterone receptor membrane component 1 (PGRMC1) is an adapter protein mediating cholesterol synthesis, steroid signaling, and cytochrome p450 activation. Attention has recently focused on the role of PGRMC1 in cell survival, anti-apoptosis, and damage response. In the present study, we used knockdown and overexpression approaches in the following set of uterine sarcoma models to further evaluate the role of PGRMC1 in drug resistance: the doxorubicin-sensitive MES-SA cells and the doxorubicin-resistant MES-SA/DxR-2 µM and MES-SA/DxR-8 µM cells (with different levels of doxorubicin resistance). PGRMC1 repressed doxorubicin-induced cytotoxicity and exhibited an anti-apoptotic effect; it also promoted cell proliferation and cell cycle progression to the S phase. Of note, PGRMC1 overexpression led to the epithelial-mesenchymal transition (EMT) of the sensitive MES-SA cells, thus facilitating their migration and invasion. The combination of PGRMC1 knockdown and the P-glycoprotein inhibitor verapamil significantly decreased the viability of P-glycoprotein-overexpressing MES-SA/DxR-8 µM cells after doxorubicin treatment. Taken together, our results show that PGRMC1 contributed to chemoresistance through cell proliferation, anti-apoptosis, and EMT induction, leading to the suggestion that PGRMC1 may serve as a therapeutic target in combination with an inhibitor in different drug resistance pathways and indicating the usefulness of predictive resistance biomarkers in uterine sarcoma.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Membrane Proteins/metabolism , Receptors, Progesterone/metabolism , Sarcoma/drug therapy , Uterine Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Apoptosis , Blotting, Western , Cell Adhesion , Cell Cycle , Cell Movement , Cell Proliferation , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , RNA, Small Interfering/genetics , Receptors, Progesterone/antagonists & inhibitors , Receptors, Progesterone/genetics , Sarcoma/genetics , Sarcoma/pathology , Signal Transduction , Tumor Cells, Cultured , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
12.
Pharmacol Res ; 90: 1-17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25242635

ABSTRACT

Drug resistance is a frequent cause of failure in cancer chemotherapy treatments. In this study, a pair of uterine sarcoma cancer lines, MES-SA, and doxorubicin-resistant partners, MES-SA/DxR-2µM cells and MES-SA/DxR-8µM cells, as a model system to investigate resistance-dependent proteome alterations and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to perform this research and the results revealed that doxorubicin-resistance altered the expression of 208 proteins in which 129 identified proteins showed dose-dependent manners in response to the levels of resistance. Further studies have used RNA interference, H2A.X phosphorylation assay, cell viability analysis, and analysis of apoptosis against reticulocalbin-1 (RCN1) proteins, to prove its potency on the formation of doxorubicin resistance as well as the attenuation of doxorubicin-associated DNA double strand breakage. To sum up, our results provide useful diagnostic markers and therapeutic candidates such as RCN1 for the treatment of doxorubicin-resistant uterine cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Calcium-Binding Proteins/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/physiology , Uterine Neoplasms/metabolism , Apoptosis/drug effects , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Proteome , RNA, Small Interfering/administration & dosage , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Up-Regulation/drug effects
13.
Mol Biosyst ; 10(12): 3086-100, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25259860

ABSTRACT

Rhein is a natural product purified from herbal plants such as Rheum palmatum, which has been shown to have anti-angiogenesis and anti-tumor metastasis properties. However, the biological effects of rhein on the behavior of breast cancers are not completely elucidated. To evaluate whether rhein might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of rhein treatment on differential protein expression as well as redox regulation in a non-invasive breast cancer cell line, MCF-7, and an invasive breast cancer cell line, MDA-MB-231, using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF mass spectrometry. This proteomic study revealed that 73 proteins were significantly changed in protein expression; while 9 proteins were significantly altered in thiol reactivity in both MCF-7 and MDA-MB-231 cells. The results also demonstrated that rhein-induced cytotoxicity in breast cancer cells mostly involves dysregulation of cytoskeleton regulation, protein folding, the glycolysis pathway and transcription control. A further study also indicated that rhein promotes misfolding of cellular proteins as well as unbalancing of the cellular redox status leading to ER-stress. Our work shows that the current proteomic strategy offers a high-through-put platform to study the molecular mechanisms of rhein-induced cytotoxicity in breast cancer cells. The identified differentially expressed proteins might be further evaluated as potential targets in breast cancer therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anthraquinones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Acetylcysteine/pharmacology , Breast Neoplasms , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , MCF-7 Cells , Oxidation-Reduction/drug effects , Proteomics , Reactive Oxygen Species/metabolism , Reproducibility of Results , Rheum/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis
14.
Electrophoresis ; 35(14): 2039-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24723343

ABSTRACT

Neuroendocrine cervical cancer is an aggressive but rare form of cervical cancer. The majority of neuroendocrine cervical cancer patients present with advanced-stage diseases. However, the limited numbers of neuroendocrine tumor markers are insufficient for clinical purposes. Thus, we used a proteomic approach combining lysine labeling 2D-DIGE and MALDI-TOF MS to investigate the biomarkers for neuroendocrine cervical cancer. By analyzing the global proteome alteration between the neuroendocrine cervical cancer line (HM-1) and non-neuroendocrine cervical cancer lines (CaSki cells, ME-180 cells, and Hela cells), we identified 82 proteins exhibiting marked changes between HM-1 and CaSki cells, and between ME-180 and Hela cells. Several proteins involved in protein folding, cytoskeleton, transcription control, signal transduction, glycolysis, and redox regulation exhibited significant changes in abundance. Proteomic and immunoblot analyses indicated respective 49.88-fold and 25-fold increased levels of transgelin in HM-1 cells compared with that in other non-neuroendocrine cervical cancer cell lines, implying that transgelin is a biomarker for neuroendocrine cervical cancer. In summary, we used a comprehensive neuroendocrine/non-neuroendocrine cervical cancer model based proteomic approach for identifying neuroendocrine cervical cancer markers, which might contribute to the prognosis and diagnosis of neuroendocrine cervical cancer.


Subject(s)
Biomarkers, Tumor/analysis , Biomarkers, Tumor/chemistry , Electrophoresis, Gel, Two-Dimensional/methods , Neuroendocrine Tumors/chemistry , Proteomics/methods , Uterine Cervical Neoplasms/chemistry , Aged , Cell Line, Tumor , Female , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Toxicol Sci ; 139(2): 396-406, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24675091

ABSTRACT

The nucleus is a key organelle in mammary cells, which is responsible for several cellular functions including cell proliferation, gene expression, and cell survival. In addition, the nucleus is the primary targets of doxorubicin treatment. In the current study, low-abundance nuclear proteins were enriched for proteomic analysis by using a state-of-the-art two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) strategy to compare and identify the nuclear protein profiling changes responsible for the development of doxorubicin resistance in human uterine cancer cells. The results of the nuclear proteomic analysis indicated that more than 2100 protein features were resolved from an equal pooled amount of three purified nuclear proteins and 117 differentially expressed spots were identified. Of these 117 identified proteins, 48 belonged to nuclear proteins and a positive correlation was observed between the expression levels of 32 of these nuclear proteins and an increase in drug resistance. According to our review of relevant research, nuclear proteins such as DNA repair protein XRCC3 (XRCC3) have not been reported to play roles in the formation of doxorubicin resistance. Previous studies have used RNA interference and cell viability analysis to evidence the essential roles of XRCC3 on its potency in the formation of doxorubicin resistance. To sum up, our nuclear proteomic approaches enabled us to identify numerous proteins, including XRCC3, involved in various drug-resistance-forming mechanisms. Our results provide potential diagnostic markers and therapeutic candidates for treating doxorubicin-resistant uterine cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Nuclear Proteins/metabolism , Proteomics , Uterine Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Female , Gene Knockdown Techniques , Humans , Protein Array Analysis , RNA, Small Interfering/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transfection , Two-Dimensional Difference Gel Electrophoresis , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
16.
Environ Mol Mutagen ; 54(6): 429-49, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23813585

ABSTRACT

Within ultraviolet radiation, ultraviolet B (UVB) is the most energetic and damaging to humans. At the protein level, UVB irradiation downregulates the expression of antioxidant enzymes leading to the accumulation of reactive oxygen species (ROS). Due to lacking of a global analysis of UVB-modulated corneal proteome, we investigate in vitro the mechanism of UVB-induced corneal damage to determine whether hyaluronic acid (HA) is able to reduce UVB irradiation-induced injury in human corneal epithelial cells. Accordingly, human corneal epithelial cell lines (HCE-2) were irradiated with UVB, followed by incubation with low molecular weight HA (LMW-HA, 100 kDa) or high molecular weight HA (HMW-HA, 1,000 kDa) to investigate the physiologic protection of HMW-HA in UVB-induced corneal injury, and to perform a global proteomic analysis. The data demonstrated that HA treatment protects corneal epithelial cells in the UVB-induced wound model, and that the molecular weight of HA is a crucial factor. Only HMW-HA significantly reduces the UVB-induced cytotoxic effects in corneal cells and increases cell migration and wound-healing ability. In addition, proteomic analysis showed that HMW-HA might modulate cytoskeleton regulation, signal transduction, biosynthesis, redox regulation, and protein folding to stimulate wound healing and to prevent these UVB-damaged cells from cell death. Further studies evidenced membrane-associated progesterone receptor component 1 (mPR) and malate dehydrogenase (MDH2) play essential roles in protecting corneal cells from UVB irradiation. This study reports on UVB-modulated cellular proteins that might play an important role in UVB-induced corneal cell injury and show HMW-HA to be a potential substance for protecting corneal cells from UVB-induced injury.


Subject(s)
Epithelium, Corneal , Hyaluronic Acid/pharmacology , Malate Dehydrogenase/genetics , Receptors, Progesterone/genetics , Ultraviolet Rays/adverse effects , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cornea/drug effects , Cornea/radiation effects , Cytoprotection , Cytoskeleton/drug effects , Cytoskeleton/radiation effects , Epithelial Cells/drug effects , Epithelial Cells/radiation effects , Epithelium, Corneal/cytology , Epithelium, Corneal/drug effects , Epithelium, Corneal/radiation effects , Humans , Malate Dehydrogenase/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Proteomics , RNA Interference , RNA, Small Interfering , Reactive Oxygen Species/radiation effects , Receptors, Progesterone/metabolism , Signal Transduction/drug effects , Signal Transduction/radiation effects , Wound Healing/drug effects , Wound Healing/radiation effects
17.
Article in English | MEDLINE | ID: mdl-23573126

ABSTRACT

Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3), caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein ( α -SNAP), Ena/VASP-like protein (Evl), and isopentenyl-diphosphate delta-isomerase 1 (Idi-1) were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

18.
J Pharm Biomed Anal ; 78-79: 1-8, 2013 May 05.
Article in English | MEDLINE | ID: mdl-23425445

ABSTRACT

Doxorubicin is an anticancer drug used in a wide range of cancer therapies; however, doxorubicin-induced drug resistance is one of the most serious obstacles of cancer chemotherapy. Recent studies have indicated that reduced oxidative stress levels in cancer cells induce drug resistance. However, the redox-modifications of resistance - associated cellular targets are largely unknown. Thus, the current study employed cysteine-labeling based two-dimensional differential gel electrophoresis (2D-DIGE) combined with MALDI-TOF mass spectrometry (MALDI-TOF MS) to analyze the effect of doxorubicin resistance on redox regulation in uterine cancer and showed 33 spots that were significantly changed in thiol reactivity. These proteins involve cytoskeleton regulation, signal transduction, redox-regulation, glycolysis, and cell-cycle regulation. The current work shows that the redox 2D-DIGE-based proteomic strategy provides a rapid method to study the molecular mechanisms of doxorubicin-induced drug resistance in uterine cancer. The identified targets may be used to further evaluate their roles in drug-resistance formation and for possible diagnostic or therapeutic applications.


Subject(s)
Antineoplastic Agents/therapeutic use , Doxorubicin/therapeutic use , Proteomics , Sulfhydryl Compounds/metabolism , Uterine Neoplasms/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Uterine Neoplasms/metabolism
19.
J Pharm Biomed Anal ; 75: 7-17, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23312379

ABSTRACT

Oral squamous cell carcinoma (OSCC) is an aggressive cancer and its occurrence is closely related to betel nut chewing in Taiwan. However, there are few prognostic and diagnostic biomarkers for this disease especially for its association with betel nut chewing. Recent progresses in quantitative proteomics have offered opportunities to discover plasma proteins as biomarkers for tracking the progression and for understanding the molecular mechanisms of OSCC. In present study, plasma samples from OSCC patients with at least 5-year history of betel nut chewing and healthy donors were analyzed by fluorescence 2D-DIGE-based proteomic analysis. Totally, 38 proteins have been firmly identified representing 13 unique gene products. These proteins mainly function in inflammatory responses (such as fibrinogen gamma chain) and transport (Apolipoprotein A-I). Additionally, the current quantitative proteomic approach has identified numerous OSCC biomarkers including fibrinogen (alpha/beta/gamma) chain, haptoglobin, leucine-rich alpha-2-glycoprotein and ribosomal protein S6 kinase alpha-3 (RSK2) which have not been reported and may be associated with the progression and development of the disease. In summary, this study reports a comprehensive patient-based proteomic approach for the identification of potential plasma biomarkers in OSCC. The potential of utilizing these markers for screening and treating OSCC warrants further investigations.


Subject(s)
Carcinoma, Squamous Cell/blood , Down-Regulation , Mouth Neoplasms/blood , Vitamin D-Binding Protein/blood , Adult , Areca/toxicity , Biomarkers/blood , Biomarkers/chemistry , Carcinoma, Squamous Cell/etiology , Disease Progression , Female , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/etiology , Humans , Male , Middle Aged , Mouth Neoplasms/etiology , Nuts/toxicity , Peptide Mapping , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Squamous Cell Carcinoma of Head and Neck , Substance-Related Disorders/physiopathology , Taiwan , Two-Dimensional Difference Gel Electrophoresis , Vitamin D-Binding Protein/chemistry
20.
Mol Biosyst ; 9(3): 447-56, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23340498

ABSTRACT

Doxorubicin is an anticancer drug used in a wide range of cancer therapies, yet some side effects have been reported. One of these is cardiotoxicity, including cardiomyopathy and ultimately congestive heart failure. This damage to the heart has been shown to result from doxorubicin-induced reactive oxygen species. However, the cellular targets of doxorubicin-induced oxidative damage on cardiomyocytes are largely unknown. For this, a cysteine-labeling-based two-dimensional difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF mass spectrometry (MALDI-TOF/TOF MS) were employed to analyze the impact of doxorubicin treatment on the redox regulation in rat cardiomyocytes. This study demonstrated 25 unique protein features that had significantly changed in their thiol reactivity and revealed that doxorubicin-induced cardiotoxicity involves dysregulation of protein folding, translational regulation and cytoskeleton regulation. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of doxorubicin-induced cytotoxicity in the heart. The identified targets may be useful for further evaluation as potential cardiotoxic biomarkers during damage to the heart induced by doxorubicin, as well as possible diagnostic or therapeutic applications.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cysteine/metabolism , Doxorubicin/toxicity , Myocytes, Cardiac/metabolism , Proteome/metabolism , Amino Acid Sequence , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , Cofilin 1/chemistry , Cofilin 1/metabolism , Cytoskeleton/drug effects , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Metabolic Networks and Pathways , Molecular Sequence Data , Myocytes, Cardiac/drug effects , NM23 Nucleoside Diphosphate Kinases/chemistry , NM23 Nucleoside Diphosphate Kinases/metabolism , Oxidation-Reduction , Peptide Fragments/chemistry , Protein Processing, Post-Translational , Proteome/chemistry , Rats , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis
SELECTION OF CITATIONS
SEARCH DETAIL
...