Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166249, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37574076

ABSTRACT

Rural sewage treatment was traditionally faced contradiction between low-treatment rates and the need for low-cost development. To address this challenge, we explored the coupling of effluent circulation and step-feeding strategies in a multi-stage tidal flow constructed wetland (TFCW) to achieve stable nitrogen (N) removal performance under conditions of low carbon-to-nitrogen (C/N) ratios and low temperatures. The modified multi-stage TFCW demonstrated the ability to significantly reduce the concentrations of effluent NH4+-N and NO3--N by 33.9 % and 54.8 % respectively, resulting in values of 7.47 mg/L and 3.93 mg/L. Additionally, it achieved an average TN removal efficiency of 69.2 %. The improved N removal performance of rural sewage by the modified multi-stage TFCW at low temperatures was primarily attributed to autotrophic nitrification, heterotrophic nitrification, and autotrophic denitrification. Among the identified functional genera, Nitrosomonas and Nitrosospira played key roles as autotrophic nitrification bacteria (ANB), contributing to 28.2 % of NH4+-N removal. The key heterotrophic nitrification bacteria (HNB) Acidovorax and Rudaea were mainly responsible for 71.3 % of NH4+-N removal via the two-step ammonia assimilation through the organic nitrogen pathway. Furthermore, Rhodanobacter and Acinetobacter emerged as key autotrophic denitrification bacteria (ADNB), accounting for 79.9 % of NO3--N conversion and removal. In summary, this study provides valuable theoretical insights and supports ongoing efforts in biological regulation to address the challenges associated with rural sewage treatment.

2.
Adv Sci (Weinh) ; 10(14): e2206896, 2023 05.
Article in English | MEDLINE | ID: mdl-36814305

ABSTRACT

Changes in gene expression in lung epithelial cells are detected in cancer tissues during exposure to pollutants, highlighting the importance of gene-environmental interactions in disease. Here, a Cd-induced malignant transformation model in mouse lungs and bronchial epithelial cell lines is constructed, and differences in the expression of non-coding circRNAs are analyzed. The migratory and invasive abilities of Cd-transformed cells are suppressed by circCIMT. A significant DNA damage response is observed after exposure to Cd, which increased further following circCIMT-interference. It is found that APEX1 is significantly down-regulated following Cd exposure. Furthermore, it is demonstrated that circCIMT bound to APEX1 during Cd exposure to mediate the DNA base excision repair (BER) pathway, thereby reducing DNA damage. In addition, simultaneous knockdown of both circCIMT and APEX1 promotes the expression of cancer-related genes and malignant transformation after long-term Cd exposure. Overall, these findings emphasis the importance of genetic-epigenetic interactions in chemical-induced cancer transformation.


Subject(s)
Cadmium , DNA Repair , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , DNA Repair/genetics , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Lung/metabolism , Epithelial Cells/metabolism , DNA/metabolism
3.
Small Methods ; 5(6): e2100154, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34927914

ABSTRACT

Ultrathin nanosheet catalysts deliver great potential in catalyzing the oxygen reduction reaction (ORR), but encounter the ceiling of the surface atomic utilizations, thus presenting a challenge associated with further boosting catalytic activity. Herein, a kind of PdPtCu ultrathin nanorings with increased numbers of electrocatalytically active sites is reported, with the purpose of breaking the activity ceiling of conventional catalysts. The as-made PdPtCu nanorings possess abundant high-index facets at the edge of both the exterior and interior surfaces. An ultrahigh electrochemical active surface area of 92.2 m2 g-1 PGM is achieved on this novel catalyst, much higher than that of the commercial Pt/C catalyst. The optimized Pd39 Pt33 Cu28 /C shows a great enhanced ORR activity with a specific activity of 2.39 mA cm-2 and a mass activity of 1.97 A mg-1 PGM at 0.9 V (versus RHE), as well as superior durability within 30 000 cycles. Density function theory calculations reveal that the high-index facets and alloying Cu atoms can optimize the oxygen adsorption energy, explaining the enhanced ORR activity. Overcoming a key technical barrier in sub-nanometer electrocatalysts, this work successfully introduces the hollow structures into the ultrathin nanosheets, heralding the exciting prospects of high-performance ORR catalysts in fuel cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...