Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27439-27449, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38764253

ABSTRACT

The charge transfer efficiency of the solid electrolyte depends on the number of lithium ions that can be effectively transported and participate in the electrode reaction. However, limited by the strong coupling relationship between Li+ and Lewis basic sites on the polymer chain, the Li+ transference number (tLi+) of the solid polymer electrolyte (SPE) based dual-ion conductor is typically low, resulting in excessive anion aggregation at the electrode side and inducing concentration polarization. In this study, we present a functionalized modified polymer electrolyte (FMPE) with selective cation transport, which was synthesized by embedding 4-(trifluoromethyl)styrene (TFS) functionalized groups onto the poly(diethylene glycol diacrylate) polymer chain. The TFS group formed noncovalent couplings with TFSI- anions through hydrogen bondings and dipole-dipole interactions, which effectively limited the migration of the anions and contributed to the elevated tLi+ of the FMPEs to 0.595 and 0.699 at 25 and 60 °C, respectively. Density functional theory (DFT) calculations were performed to verify the increased anion migration barriers for different noncovalent interactions and revealed that the conjugated system formed by the delocalized π electrons of the benzene ring and the C═O groups helped to disperse the electron distribution of the polymer chains. Consequently, the decrease in the degree of Li+ immobilization promotes the decoupling and migration of Li+ between the polymer chains. Benefiting from optimized Li+ transport behavior, the lithium metal batteries (LMBs) assembled by FMPEs and LiFePO4 exhibit excellent rate performance (discharge specific capacity of 88.8 mAh g-1 at 5 C) and stable long-term cycle performance (capacity decay rate of only 0.064% per cycle for 500 cycles at 25 °C and 0.5 C).

2.
ACS Appl Mater Interfaces ; 15(6): 8128-8137, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36744574

ABSTRACT

Solid polymer electrolytes (SPEs) are considered to be attractive candidates for rechargeable batteries on account of their high safety and flexible processability. However, the restricted polymer segmental dynamics limit the Li+ conduction of SPEs. Herein, a composite electrolyte membrane was prepared via in situ thermal-initiating polymerization of diethylene glycol diacrylate (DEGDA) in a poly(vinylidene fluoride) frameworks (PVDF FMs) electrospun in advance. As a quasi-solid polymer electrolyte (QSPE), it provides multiple transport highways for Li+ built by the C═O or C-O or C═O/C-O groups in poly(diethylene glycol) diacrylate (PDEGDA), respectively, proved by density functional theory calculations together with the high-resolution 7Li solid-state nuclear magnetic resonance spectra. Since the interaction between Li+ and C═O is weaker than that between Li+ and C-O, Li+ tends to move along C═O dominating paths in PDEGDA/PVDF FMs QSPEs, even skipping back to C═O nodes from the original C-O dominating way. Multiple transport patterns facilitate Li+ migration within PDEGDA/PVDF FMs QSPEs, contributing to the ionic conductivity of 1.41 × 10-4 S cm-1 at 25 °C and the Li+ transference number of 0.454. Ascribing to the wetting capability of the monomer to the electrodes in use, compatible electrolyte/electrode interfaces with low interface resistance and compact cells were acquired by the in situ polymerization. Protective lithiated oligomers (RCOOLi) and LiF are enriched at the Li anode surface, promoting a lasting stable Li plating/stripping over 2000 h. By applying the QSPEs in LiFePO4 cell, a capacity of 157.7 mAh g-1 with almost 100% coulombic efficiency during 200 cycles is achieved at 25 °C.

3.
ACS Appl Mater Interfaces ; 14(4): 5346-5354, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35044148

ABSTRACT

A solid-state composite polymer electrolyte comprising Li7La3Zr2O12 nanofibers (LLZO NFs) as fillers has the advantages of flexibility, ease of processing, and being low cost, thus being considered to be a promising electrolyte material for use in the next generation of highly safe lithium metal batteries. However, poor compatibility of organic parts and inorganic materials leads to quick capacity decay after long-term charge/discharging running because of inorganic/organic interface deterioration and thus, the related ineffective lithium-ion (Li+) conduction. Herein, a "Boston ivy-style" method is proposed to prepare a solid ceramic/polymer hybrid electrolyte that exhibits a dense interface structure. After grafting on Dynasylan IMEO (DI), the modified LLZO NFs are used as ligands to bond with coordinatively unsaturated metal centers of Ca2+. Furthermore, these Ca2+ bridge the modified LLZO NFs with poly(ethylene oxide) (PEO) via the ether oxygen atoms they possess. The bridges built between the two phases, PEO and LLZO NFs, are effective to interface strengthening and guarantee rapid Li+ conduction even after 900 cycles. The PEO/LLZO NFs-DI-Ca2+/LiTFSI electrolyte shows a high Li+ transference number of 0.72 (60 °C). The Li||LiFePO4 cell delivers excellent cycling stability (capacity retention of 70.8% after 900 cycles, 0.5 C) and rate performance. The bridge strategy is proved to be effective and probably a promotion to the application of ceramic polymer-based solid-state electrolytes.

4.
Water Sci Technol ; 79(3): 580-588, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30924813

ABSTRACT

Fe-C micro-electrolysis was employed to the pretreatment of evaporated condensate generated during metal cutting process. The effect of the reaction conditions on the contaminant removal and degradation mechanism were studied. Through single-factor experiments, the effects of solid-liquid ratio, gas-liquid ratio and reaction time on the treatment of wastewater were preliminarily determined. The optimal reaction condition obtained was: 500 g/L solid-liquid ratio, 30:1 gas-liquid ratio with 4 h reaction time. Under the optimal condition, the chemical oxygen demand (COD) removal efficiency of micro-electrolysis could reach around 25%, and the biodegradability of wastewater increased from 0.12 to 0.32. According to the analysis results of gas chromatography-mass spectrometry (GC-MS) qualitative analysis, it was observed that the most organic contaminants in the influent were degraded or converted into simple structures under Fe-C micro-electrolysis, indicates that Fe-C micro-electrolysis pretreatment could improve the biodegradability of the evaporated condensate generated during metal cutting process and achieve certain degree removal of COD.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Electrolysis , Metals , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL