Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937844

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Subject(s)
Aldo-Keto Reductases , Curcumin , Non-alcoholic Fatty Liver Disease , Triglycerides , Curcumin/pharmacology , Curcumin/analogs & derivatives , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Hep G2 Cells , Aldo-Keto Reductases/metabolism , Rats , Male , Triglycerides/blood , Triglycerides/metabolism , Acetyl-CoA Carboxylase/metabolism , Aldehyde Reductase/metabolism , Aldehyde Reductase/antagonists & inhibitors , Diet, High-Fat/adverse effects , Molecular Docking Simulation , Liver/drug effects , Liver/metabolism , Metformin/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Rhodanine/analogs & derivatives , Thiazolidines
2.
Front Pharmacol ; 13: 960140, 2022.
Article in English | MEDLINE | ID: mdl-36304153

ABSTRACT

In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1ß, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.

3.
Int J Anal Chem ; 2022: 8850914, 2022.
Article in English | MEDLINE | ID: mdl-35295923

ABSTRACT

Lonicera japonica Thunb is a commonly used Chinese herbal medicine, which belongs to the family Caprifoliaceae. The active components varied greatly during bud development. Research on the variation of the main active components is significant for the timely harvesting and quality control of Lonicera japonica. In this study, the attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) combined with the chemometric method was performed to investigate the variability of different harvesting periods of Lonicera japonica. The preliminary characterization from ATR-FTIR fingerprints showed various characteristic absorption peaks of the main active components from the different harvesting times, such as flavonoids, organic acids, iridoids, and volatile oils. Additionally, principal component analysis (PCA) scatter plots showed that there was a clear clustering trend in the samples of the same harvesting period, and the samples of the different harvesting periods could be well distinguished. Finally, further analysis by the orthogonal partial least-squares discriminant analysis (OPLS-DA) showed that there were regular changes in flavonoids, phenolic acids, iridoids, and volatile oils in different harvesting periods. Therefore, ATR-FTIR, as a novel and convenient analytical method, could be applied to evaluate the quality of Lonicera japonica.

4.
Oxid Med Cell Longev ; 2021: 9180635, 2021.
Article in English | MEDLINE | ID: mdl-34336118

ABSTRACT

Hyperlipidemia, a typical metabolic disorder syndrome, can cause various cardiovascular diseases. The polysaccharides were found to have enormous potential in the therapy of hyperlipidemia. This study was aimed at evaluating the ameliorative effects of polysaccharide from Turpiniae folium (TFP) in rats with hyperlipidemia. A serum metabolomic method based on gas chromatography-mass spectrometry (GC-MS) was used to explore the detailed mechanism of TFP in rats with hyperlipidemia. The oxidative stress indicators, biochemical indexes, and inflammatory factors in serum and histopathological changes in the liver were also evaluated after 10-week oral administration of TFP in rats with high-fat diet-induced hyperlipidemia. TFP significantly relieved oxidative stress, inflammation, and liver histopathology and reduced blood lipid levels. Multivariate statistical approaches such as principal component analysis and orthogonal projection to latent structure square-discriminant analysis revealed clear separations of metabolic profiles among the control, HFD, and HFD+TFP groups, indicating a moderating effect of TFP on the metabolic disorders in rats with hyperlipidemia. Seven metabolites in serum, involved in glycine, serine, and threonine metabolism and aminoacyl-tRNA biosynthesis, were selected as potential biomarkers in rats with hyperlipidemia and regulated by TFP administration. It was concluded that TFP had remarkable potential for treating hyperlipidemia. These findings provided evidence for further understanding of the mechanism of action of TFP on hyperlipidemia.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hyperlipidemias/drug therapy , Metabolomics/methods , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Polysaccharides/therapeutic use , Animals , Disease Models, Animal , Male , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Rats , Rats, Sprague-Dawley
5.
Environ Toxicol ; 36(9): 1802-1816, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34089294

ABSTRACT

Fluoride is considered as one of the most ubiquitous environmental pollutants. Numerous studies have linked reactive oxygen species (ROS)-dependent oxidative damage with fluoride intoxication, which could be prevented by antioxidants. However, the metabolomic changes induced by ROS disruptions in fluoride intoxication are yet unknown. The present study aimed to provide novel mechanistic insights into the fluoride-induced oxidative damage and to investigate the potential protective effects of ethanolic extract of Prunella vulgaris (natural antioxidant, PV) against fluoride-induced oxidative damage. The serum biochemical indicators related to fluoride-induced oxidative damage, such as lipid peroxidation parameter, inflammation and marker enzymes in the liver increased significantly in the fluoride-treated group, while antioxidant enzymes were decreased. However, PV treatment restored the level of these biochemical indicators, indicating satisfactory antioxidant, anti-inflammatory, and hepatoprotective potential of PV. The metabolomics analysis in the serum was performed by liquid chromatography-mass spectroscopy, whereas the fluoride treatment caused severe metabolic disorders in rats, which could be improved by PV. The differential metabolites screened by multivariate analysis after fluoride and PV treatment, were organic acids, fatty acids, and lipids. These differential metabolites represented disorders of glyoxylate and dicarboxylate metabolism and the citrate cycle (TCA) according to metabolic pathway analysis in fluoride treatment rats. Interestingly, the result of metabolic pathway analysis of post-treatment with PV was consistent with that of fluoride treatment, indicating that the energy metabolism plays a major role in the progress of fluoride-induced oxidative damage, as well as the therapeutic effect of PV. These findings provided a theoretical basis for understanding the mechanism underlying metabolic disorders of fluoride toxicity and the effect of PV.


Subject(s)
Prunella , Animals , Antioxidants , Fluorides/toxicity , Metabolomics , Oxidative Stress , Rats
6.
Zhongguo Zhong Yao Za Zhi ; 43(3): 527-531, 2018 Feb.
Article in Chinese | MEDLINE | ID: mdl-29600617

ABSTRACT

To analyze the metabolites of Chenxiang Huaqi pill in rats by using ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). The separation was performed on Phenomenex Kinetex C18 column, with the acetonitrile -0.1% formic acid as the mobile phase for gradient elution at a flow rate of 0.8 mL·min⁻¹. The data were collected by the positive ion mode of ESI source. The plasma and urine total ion chromatograms of the rats in blank group and treatment group were used to analyze the targeted ion chromatograms. The results showed that 24 compounds were detected in the plasma and urine, including 5 prototype components and 19 metabolites. The major metabolic pathways included hydration, glucuronidation, demethylation, hydrolysis, hydroxylation and sulfation. The method was rapid, simple and sensitive, and can be used to rapidly identify the metabolites of Chenxiang Huaqi pill that can be absorbed in rats, providing a reference for the study of the absorption and metabolism mechanism of Chenxiang Huaqi pill in vitro.


Subject(s)
Drugs, Chinese Herbal/metabolism , Animals , Chromatography, High Pressure Liquid , Plasma/chemistry , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Urine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL