Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893330

ABSTRACT

Hierarchical-porous-structured materials have been widely used in the field of electromagnetic wave (EMW) absorption, playing a critical role in minimizing EMW interference and pollution. High-quality EMW absorbers, characterized by a lower thickness, lighter weight, wider absorption band, and stronger absorption capacity, have been instrumental in reducing damage and preventing malfunctions in the automotive and aviation industries. The utilization of discarded nut shells through recycling can not only alleviate environmental problems but relieve resource constraints. Herein, a facile method for the preparation of hierarchical porous biomass carbon derived from abandoned Xanthoceras Sorbifolium Bunge Shell (XSS) biomass was developed for high-performance EMW absorption. The porous structures of XSS biochar were studied by using different levels of the K2CO3 activator and simple carbonization. The effect of K2CO3 on the EMW parameters, including the complex permittivity, complex permeability, polarization relaxation, and impedance matching, was analyzed. The best EMW absorption performance of the XSS biochar was observed at a mass ratio of activator-to-biomass of 2:1. A minimum reflection loss (RLmin) of -38.9 dB was achieved at 9.12 GHz, and a maximum effective absorption bandwidth (EABmax) of up to 3.28 GHz (14.72~18.0 GHz) could be obtained at a 1.8 mm thickness. These results demonstrated that hierarchical porous XSS carbon was prepared successfully. Simultaneously, the prepared XSS biochar was confirmed as a potential and powerfully attractive EMW-absorbing material. The proposal also provided a simple strategy for the development of a green, low-cost, and sustainable biochar as a lightweight high-performance absorbing material.

2.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893519

ABSTRACT

Nitrite is one of the most common nitrogenous compounds, which is not only an important indicator of aquaculture water but also widely used as a food additive. Its potential toxicity poses a huge threat to aquatic products and human health. Therefore, it is important to develop a convenient and rapid sensor for the high-efficient onsite detection of nitrite. In this work, a novel electrochemical sensor was developed for the qualitative and quantitative analysis of nitrite. The developed nitrite electrochemical detection system is easily applied in onsite detection. The electrochemical working electrode was constructed based on the combination of Ag-CeO2 and conductive carbon paste (CPE) with excellent electrocatalysis activity and rapid electron transfer ability. By the application of the developed system and under the optimal conditions, the linear range was from 40.0 µM to 500.0 µM, and the detection limit was reduced to 4.3 µM. The recovery was between 92.1% and 108.1%, and the relative standard deviations (RSDs) were 0.49%~9.31%. The sensor exhibited superior reproducibility, high stability sensitivity, and anti-interference ability, confirming its effectiveness for nitrite analysis. Finally, the developed electrochemical sensor was successfully applied to detect nitrite in beverages and aquaculture water samples, indicating that this approach has great potential in onsite food testing and environmental monitoring.


Subject(s)
Aquaculture , Beverages , Cerium , Electrochemical Techniques , Nitrites , Nitrites/analysis , Electrochemical Techniques/methods , Cerium/chemistry , Beverages/analysis , Silver/chemistry , Limit of Detection , Water Pollutants, Chemical/analysis , Electrodes , Reproducibility of Results , Water/chemistry , Water/analysis
3.
Biosensors (Basel) ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36979539

ABSTRACT

Antibiotics are considered a new type of organic pollutant. Antibiotic residues have become a global issue due to their harm to human health. As the use of antibiotics is increasing in human life, such as in medicine, crops, livestock, and even drinking water, the accurate analysis of antibiotics is very vital. In order to develop rapid and on-site approaches for the detection of antibiotics and the analysis of trace-level residual antibiotics, a high-sensitivity, simple, and portable solution is required. Meanwhile, the rapid nanotechnology development of a variety of nanomaterials has been achieved. In this review, nanomaterial-based techniques for antibiotic detection are discussed, and some reports that have employed combined nanomaterials with optical techniques or electrochemical techniques are highlighted.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Anti-Bacterial Agents/analysis , Biosensing Techniques/methods , Nanostructures/chemistry , Nanotechnology/methods , Electrochemical Techniques/methods
4.
Arch Med Sci ; 19(1): 151-159, 2023.
Article in English | MEDLINE | ID: mdl-36817669

ABSTRACT

Introduction: This study aims to explore the effects of microRNA-1286 (miR-1286) on the development of non-small cell lung cancer (NSCLC) via the aerobic glycolysis pathway by targeting pyruvate kinase muscle isozyme M2 (PKM2). Material and methods: The mRNA levels of miR-1286 in NSCLC tissues and mouse tumor tissues were detected by q-PCR. MiR-1286 was knocked down and overexpressed separately in A549 cells. The effect of miR-1286 on cell proliferation was determined by CCK8 assay. Western blotting was used to measure the expression of PKM2 protein. Lactate production assay was used to detect the aerobic glycolysis in A549 cells. The effect of miR-1286 in vivo was determined by xenograft assay. Results: The mRNA level of miR-1286 decreased in NSCLC tissues compared with paired, tumor adjacent normal tissues. In addition, miR-1286 inhibited A549 cell proliferation in vitro. Moreover, knockdown of miR-1286 increased PKM2 expression and lactate production. Thus, miR-1286 expression negatively correlated with PKM2 in A549 cells. At the same time, in vivo experiments also showed that miR-1286 suppressed the growth of A549 cells and PKM2 was the target gene of miR-1286. Conclusions: These data show that miR-1286 inhibits lung cancer proliferation via aerobic glycolysis by targeting PKM2, which suggests that the functions of miR-1286 in NSCLC may play a key role in tumor progression and that miR-1286 can be a promising predictive biomarker and potential therapeutic target for NSCLC.

5.
Talanta ; 253: 123920, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36122433

ABSTRACT

Cell density is important for tumour metastasis, treatment and prognosis. Characterizing changes in cell density for electrochemotherapy (ECT) can reveal sub-populations in pathological states, and adjust treatment program. In this work, a simple and convenient microfluidic platform was developed to study the effect cell density on ECT by integrating the improved cell gradient generator, cell culture chamber and indium tin oxide interdigital electrodes. Agarose, as extracellular matrix (ECM), was used to 3D cell culture to imitate in vivo microenvironment. The precision and reproducibility of cell density gradient with agarose solution were achieved because the hydrophobic modification of microchannels surface resulted in reducing cell adhesion and residue. ECT cytotoxicity assay with difference in cell densities was studied. The results showed that tumour cell density is one of the most factors for ECT treatment and ECT cytotoxicity has a certain of cell density-depended. But only electroporation on low cell density level, ECM would be one of the most key factors for ECT cytotoxicity, which would provide a new idea for chip-based cell assay in clinical diagnosis and drug screening in ordinary laboratories.


Subject(s)
Hydrogels , Neoplasms , Humans , Reproducibility of Results , Microfluidics , Cell Count , Tumor Microenvironment
6.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235269

ABSTRACT

Antibiotics have become a new type of environmental pollutant due to their extensive use. High-performance adsorbents are of paramount significance for a cost-effective and environmentally friendly strategy to remove antibiotics from water environments. Herein, we report a novel annular mesoporous carbon (MCN), prepared by phenolic resin and triblock copolymer F127, as a high-performance adsorbent to remove penicillin, streptomycin, and tetracycline hydrochloride from wastewater. The MCNs have high purity, rich annular mesoporosity, a high surface area (605.53 m2/g), and large pore volume (0.58 cm3/g), improving the adsorption capacity and facilitating the efficient removal of penicillin, streptomycin, and tetracycline hydrochloride from water. In the application of MCNs to treat these three kinds of residual antibiotics, the adsorption amounts of tetracycline hydrochloride were higher than penicillin and streptomycin, and the adsorption capacity was up to 880.6 mg/g. Moreover, high removal efficiency (99.6%) and excellent recyclability were achieved. The results demonstrate that MCN adsorbents have significant potential in the treatment of water contaminated with antibiotics.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Carbon , Formaldehyde , Penicillins , Phenols , Polymers , Streptomycin , Tetracycline , Water
7.
Genet Mol Biol ; 45(3): e20210370, 2022.
Article in English | MEDLINE | ID: mdl-36121916

ABSTRACT

This study aimed to uncover transcription factors that regulate super-enhancers involved in glucose metabolism reprogramming in poorly differentiated thyroid carcinoma (PDTC). TCA cycle and pyruvate metabolism were significantly enriched in PDTC. Differentially expressed genes in PDTC vs. normal control tissues were located in key steps in TCA cycle and pyruvate metabolism. A total of 23 upregulated genes localized in TCA cycle and pyruvate metabolism were identified as super-enhancer-controlled genes. Transcription factor analysis of these 23 super-enhancer-controlled genes related to glucose metabolism was performed, and 20 transcription factors were obtained, of which KLF12, ZNF281 and RELA had a significant prognostic impact. Regulatory network of KLF12, ZNF281 and RELA controlled the expression of these four prognostic target genes (LDHA, ACLY, ME2 and IDH2). In vitro validation showed that silencing of KLF12, ZNF281 and RELA suppressed proliferation, glucose uptake, lactate production and ATP level, but increased ADP/ATP ratio in PDTC cells. In conclusion, KLF12, ZNF281 and RELA were identified as the key transcription factors that regulate super-enhancer-controlled genes related to glucose metabolism in PDTC. Our findings contribute to a deeper understanding of the regulatory mechanisms associated with glucose metabolism in PDTC, and advance the theoretical development of PDTC-targeted therapies.

8.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206584

ABSTRACT

In this work, a simple and rapid method based on the lateral flow assay (LFA) has been developed for the detection of dual antibiotics. To achieve the quantitative assay and to reduce the non-specific adsorption, an internal system has been developed. A non-specific DNA was exploited as an internal standard and could be recognized by the DNA marker that was coated at the internal line. Two different kinds of aptamers were applied to recognize ampicillin (AMP) and kanamycin (KAM), and the distance between the detection line and conjugate pad was then optimized. Under the optimum conditions, the quantitative assays of AMP (R2 = 0.984) and KAM (R2 = 0.990) were achieved with dynamic ranges of 0.50 to 500.0 ng/L, and of 0.50 to 1000.0 ng/L, respectively. The LOQs of AMP and KAM were 0.06 ng/L and 0.015 ng/L, respectively. Finally, the proposed method has been successfully applied to analyze aquaculture water, tap water, and lake water, and hospital wastewater, indicating the established method could be used to monitor the environment.


Subject(s)
Ampicillin/analysis , Aptamers, Nucleotide/chemistry , Kanamycin/analysis , Water/analysis
9.
Talanta ; 225: 122019, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33592749

ABSTRACT

A convenient, facile, and mask-free approach assay was developed for single-cell study by using a combination of inkjet printing technology and polydimethylsiloxane (PDMS) microchip-assisted processing. The inkjet printing technology resulted in 91% of the single-cell occupancy by individually spraying MCF-7 cells on a hydrophobic substrate and enabled the control over the number of cells with precision by strictly optimizing the printing parameters. Further, the microchip containing a cell chamber and straight channels was attached to the glass slide to explore the real-time performance of the cells. To address the performance attributes, the enzyme kinetics and various parameters of the post-printed MCF-7 cells, such as the levels of cell viability, reactive oxygen species (ROS), cell apoptosis, and proliferation, are monitored in real-time. Interestingly, high activity and proliferation, low level of ROS, and cell apoptosis demonstrated that the developed method provided a new way to the study of single-cell in-depth. Finally, ATP-induced cell proliferation of different cell number were analyzed, and the results would provide another perspective for the diagnosis and medical treatment.


Subject(s)
Glass , Cell Survival , Hydrophobic and Hydrophilic Interactions , Kinetics , Microarray Analysis
10.
Micromachines (Basel) ; 11(4)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326021

ABSTRACT

In this study, a convenient assay method has been developed based on labeled functional nucleic acids (H-DNA) and a competitive fluorescent lateral flow immunoassay (CF-LFI) for ampicillin (AMP) detection. Herein, we designed the tunable AMP probes for AMP detection based on the AMP aptamer, and the secondary DNA fragment. The probes can generate tunable signals on the test line (T line) and control line (C line) according to the concentration of AMP. The accuracy of detection was improved by optimizing the tunable AMP probes. Under the optimal conditions, the linear concentration of AMP detection is ranged from 10 to 200 ng/L with a limit of quantitation (LOQ) value of 2.71 ng/L, and the recovery is higher than 80.5 %. Moreover, the developed method shows the potential application for AMP detection in the hospital wastewater.

11.
Se Pu ; 38(10): 1179-1188, 2020 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-34213114

ABSTRACT

Human papillomavirus (HPV), is a common spherical DNA virus that can lead to six types of cancers later in life, which has recently garnered human's attention. Microchip capillary electrophoresis (MCE) has provided simple, fast, portable, and sensitive HPV typing assay assisted by a variety of signal amplification technologies. This review presents the latest research progress of MCE in routine HPV typing assays, including both of the MCE techniques and MCE combined with the nucleic acid amplification techniques for HPV assay. The introduction on the former part concerns the MCE system, the MCE chips design and electrophoretic separation methods. The typical MCE system includes high voltage power supply, microfluidic chip of separation, sample injection, electrolyte cell, detection unit and so on. Four different chips are reviewed, containing straight separation channel, T-channel, serpentine channel and dual channel, because these microchips are the most used in the last decade. Furthermore, the high integration and high throughput on a single chip are often integrated the sample preparation unit on a chip. The advantages and disadvantages of different designed microchips are introduced at the same time. The separation methods of chip electrophoresis are briefly introduced. With the development and application of MCE for HPV detection, the separation time is greatly shortened from a few hours to several minutes. The review on the second part gives the comments on various kinds of nucleic acid amplification technologies coupled with MCE for HPV assay. Firstly, the comparative analysis is given on the polymerase chain reaction (PCR) combined with MCE, loop-mediated isothermal amplification (LAMP), PCR combined with restriction fragment length polymorphism (RFLP) for HPV DNA detection, and nucleic acid sequence based amplification (NASBA) for the detection of HPV mRNA, nested PCR and so on. Secondly, the reviews on the other methods beside MCE are also summarized, including the PCR coupled with Fourier transform-infrared spectroscopy (FT-IR spectroscopy), nanotechnology, DNA probes combined with electrochemical methods, reductive Cu(Ⅰ) particles catalyzed Zn-doped MoS2 quantum dots and T7 exonuclease with electrochemiluminescence, LAMP with CRISPR/Cas12a based lateral. In these non-MCE methods, the electrochemical sensing, e. g., impedimetric detection, pulse voltammetry method and flow biosensor, is an ideal method due to its low background signal and excellent time control ability. Finally, although MCE technologies have been developed and the developed instruments are applied in recent years, there are still some challenges in MCE techniques, methods and applications. The first challenge faced in the application of MCE technique in HPV typing assay is that the MCE device can not be well utilized for the detection of HPV with high resolution and high sensitivity, because MCE can not do signal amplification of HPV nucleic acid. The second challenge is that even though some researchers have successfully integrated PCR and MCE on one chip, the technique still faces difficulty for wide application and there is still no really integrated PCR-MCE chip for HPV detection. The third one is the MCE technique is lack for the manufacture of miniaturized and automatic instrument. At the end of review, the authors' insights are given on the development of automatic, fast, high stable and reliable detection in the HPV typing via the portable MCE device.


Subject(s)
Electrophoresis, Microchip , Papillomaviridae , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Spectroscopy, Fourier Transform Infrared
12.
Micromachines (Basel) ; 10(9)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466251

ABSTRACT

Herein, we demonstrate the fabrication of innovative pH-activable carbon nanoparticles (CNPs) based on urea and citric acid by microwave-assisted green synthesis for application in cell imaging. These CNP-based nanoprobes offer significant advantages of pH responsiveness and excellent biocompatibility. The pH responsiveness ranges from 1.0 to 4.6 and the slightly pH responsiveness ranges from 4.6 to 9.0. In addition, the pH-dependent modification of charge as well as the final diameter of the designed CNPs not only provide support as stable sensors for cell imaging under pH values from 4.6 to 9.0, but can also observe the pH change in cells from 1.0 to 4.6. Importantly, this significantly enhances the cellular internalization process resulting in tumor cell death. Together, we believe that these superior photoluminescence properties of our designed nanomaterials potentially allow for biological labeling, bioimaging, and drug delivery applications.

13.
Talanta ; 202: 452-459, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31171207

ABSTRACT

Despite the success in long-term storage of food and dietary products using antibiotics as supplements, enormous levels of their residues have remained as a significant health concern, leading to severe toxicity issues on consumption. Herein, we report an ultrasensitive and highly selective aptasensor based on carbon nanoparticles (CNPs) through a fluorescence-based aptamer-linked immunosorbent assay (FALIA) for rapid detection of kanamycin (KAA) residue. The fabricated CNP-aptasensor exhibited superior selectivity with exceptional photoluminescence properties. Under the optimal conditions, the linear equation of standard KAA solution was Y = -0.2279LogX+1.3648 (R = -0.9893) ranged from 10-4 to 10-7 ppb with excellent relative standard deviations (RSD) between 3.12 and 5.59 % (n = 3). Moreover, the limit of detection (LOD) was lower than 5.0 × 10-8 ppb. Together, the excellent recovery and significant efficacy in the rapid detection of antibiotics at a low level in milk indicate that this fabricated CNP-aptasensor has a great potential in the establishment of an efficient antibiotic detector system in food and other nutraceutical industries.


Subject(s)
Aptamers, Nucleotide/chemistry , Carbon/chemistry , Immunosorbent Techniques , Kanamycin/analysis , Luminescence , Quantum Dots/chemistry
14.
Molecules ; 24(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159343

ABSTRACT

In this work, with the drug oxytetracycline (OTC) released, cell cytotoxicity and antimicrobial studies of dual-responsive sodium alginate and N-Isopropylacrylamide hydrogels (SA/pNIPAAm) with enclosed OTC were investigated. The molecular OTC release was explored with different acid-base conditions and temperature conditions. In order to characterize cell cytotoxicity and antimicrobial efficacy, time-dependent OTC release analysis of different acid-base conditions was performed in SA/pNIPAAm hydrogels. OTC@SA/pNIPAAm hydrogels showed excellent time-dependent antimicrobial efficacy, in which the IC50 values were 50.11 µg mL-1, 34.27 µg mL-1, and 22.39 µg mL-1 among three consecutive days, respectively. Meanwhile, the human cells showed excellent viability at the IC50 dosage of OTC@SA/pNIPAAm (50.11 µg mL-1). OTC@SA/pNIPAAm performed in this study indicated that SA/pNIPAAm may serve as drug carriers for sustainable release at a specific concentration and for being employed as substrates for decreasing drug toxicity. Besides, pH-responsive and thermos-responsive SA/pNIPAAm may lead to the better selectivity of drug release in the ideal location or site. Finally, the results demonstrate that the designed, dual-responsive, biocompatible OTC@SA/pNIPAAm hydrogels showed excellent antimicrobial efficacy and may potentially be found to have enormous applicability in the field of pharmaceutics.


Subject(s)
Alginates/chemistry , Delayed-Action Preparations , Drug Carriers/chemistry , Hydrogels/chemistry , Pharmaceutical Preparations/administration & dosage , Anti-Infective Agents/administration & dosage , Cell Line , Cell Survival/drug effects , Drug Delivery Systems , Drug Liberation , Drug Stability , Humans , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , Pharmaceutical Preparations/chemistry , Spectrum Analysis
15.
Sensors (Basel) ; 19(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091745

ABSTRACT

In this work, we have developed a simple and rapid colorimetric assay for the detection of immunoglobulin E (IgE) using functional nucleic acids (FNAs) and a solid-phase competition enzyme-linked immunosorbent assay (ELISA). The FNAs including aptamer of recombinant IgE, G-quadruplex and its complementary fragments were immobilized on 96-well microplates to achieve recognition and detection of IgE in biological samples. The G-quadruplex DNAzyme catalyzed 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS)-hemin-H2O2 system was used to improve the sensitivity of colorimetric assay. In the presence of IgE, the hairpin structure and G-quadruplex would be destroyed, resulting in the inactivation of DNAzyme and subsequent reduction of its absorbance. This cost-effective approach detected IgE in the linear range from 5.0 pg/mL to 500 ng/mL, with the limit of detection (LOD) of 2.0 pg/mL, under optimal conditions. Moreover, the developed method was successfully applied to the rapid detection of IgE in human urine, indicating a great potentiality of this approach in clinical diagnosis and other biomedical applications.


Subject(s)
Biosensing Techniques , Colorimetry , Immunoglobulin E/isolation & purification , Benzothiazoles/chemistry , DNA, Catalytic/chemistry , G-Quadruplexes , Humans , Hydrogen Peroxide/chemistry , Immunoglobulin E/chemistry , Limit of Detection , Nucleic Acid Amplification Techniques , Sulfonic Acids/chemistry
16.
Sci Rep ; 9(1): 3489, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837641

ABSTRACT

Carbon nanoparticles (CNPs) have been combined with aptamer, providing a broad application in small molecule. CNPs can be quenched by small molecules and are usually applied as luminescent probes because of their photophysical characteristics. In this work, we developed a competitive analysis for antibiotic residues detection based on carbon nanoparticles (CNPs) and oligonucleotide probes. Oligonucleotide probes including oxytetracycline (OTC) aptamer was exploited for recognition OTC and was used to restore the luminescence. Tetracycline (TC), as a competitor of OTC, was utilized to quench the luminescence of CNPs and reduce the sample matrix effect. Under optimal conditions, the linear rang of OTC was 0.010~1.0 ng/mL with the relative standard deviations (RSDs) from 2.91% to 11.3%, and the limit of detection (LOD) was low to 0.002 ng/mL. Moreover, the proposal was successfully applied to analyze OTC from drink water, indicating that this approach has great potential for other small molecule analysis.


Subject(s)
Anti-Bacterial Agents/analysis , Carbon/chemistry , Nanoparticles/chemistry , Oligonucleotide Probes/chemistry , Aptamers, Nucleotide/chemistry , DNA, Single-Stranded/chemistry , Fresh Water/analysis , Hydrogen-Ion Concentration , Limit of Detection , Oxytetracycline/analysis , Tetracycline/analysis
17.
Anal Chem ; 90(17): 10326-10333, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30094990

ABSTRACT

In this work, we report the direct diagnosing chemoresistance of glioma stem cells (GSCs) during chemotherapy on a biomimetric microsystem that reconstitutes glioma perivascular niches on a chip. Glioma stem cells and endothelial cells were specially cocultured onto the biomimetric system to precisely control stem cell coculture for the proof-of-principle studies. The expression levels of 6- O-methylguanine was confirmed by mass spectrometer, and Bmi-1 gene was also investigated to uncover the chemoresistance of GSCs. The results demonstrated that the formation of perivascular niches effectively maintains the glioma stem cells at a pluripotent status owing to their successful cellular interactions. A stronger chemoresistance of glioma stem cells was confirmed by the formation of the GSCs neurosphere, the expression levels of 6- O-methylguanine and Bmi-1 gene. The vital role of endothelial cells in chemoresistance was demonstrated. The chemoresistance reported in this work will contribute to glioma therapy.


Subject(s)
Brain Neoplasms/pathology , Drug Resistance, Neoplasm , Endothelium, Vascular/cytology , Glioblastoma/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/metabolism , Cell Line , Coculture Techniques , Endothelial Cells/cytology , Equipment Design , Glioblastoma/blood supply , Glioblastoma/metabolism , Humans , Lab-On-A-Chip Devices , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/cytology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
18.
Anal Chem ; 89(18): 10037-10044, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28820578

ABSTRACT

Interaction between tumor and endothelial cells could affect tumor growth and progression and induce drug resistance during cancer therapy. Investigation of tumor-endothelial cell interaction involves cell coculture, protein detection, and analysis of drug metabolites, which are complicated and time-consuming. In this work, we present an integrated microfluidic device with three individual components (cell coculture component, protein detection component, and pretreatment component for drug metabolites) to probe the interaction between tumor and endothelial cells. Cocultured cervical carcinoma cells (CaSki cells) and human umbilical vein endothelial cells (HUVECs) show higher resistance to chemotherapeutic agents than single-cultured cells, indicated by higher cell viability, increased expression of angiogenic proteins, and elevated level of paclitaxel metabolites under coculture conditions. This integrated microfluidic platform with multiple functions facilitates understanding of the interaction between tumor and endothelial cells, and it may become a promising tool for drug screening within an engineered tumor microenvironment.


Subject(s)
Human Umbilical Vein Endothelial Cells/cytology , Microfluidic Analytical Techniques , Uterine Cervical Neoplasms/diagnostic imaging , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Equipment Design , Female , Glutathione/analysis , Glutathione/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mass Spectrometry , Microfluidic Analytical Techniques/instrumentation , Molecular Structure , Optical Imaging , Paclitaxel/chemistry , Paclitaxel/metabolism , Paclitaxel/pharmacology , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism
19.
Chem Commun (Camb) ; 53(11): 1900-1903, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28117861

ABSTRACT

The identification of G1-phase arrest requires a dynamic capturing method. In this work, we reported an indicator based on MYC and CDKN1A mRNA imaging to visualize G1-phase cycle arrest. A typical G1-phase arrest imaging is shown as a green-to-red conversion by fluorescence molecular beacons indicating the change as down-regulating of MYC and up-regulating of CDKN1A mRNA. We performed G1-phase arrest imaging on proliferated cancer cells inhibited by TMPyP4 and explore the role of HIF-1α in the proliferation inhibition effect.


Subject(s)
Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , G1 Phase/drug effects , G1 Phase/genetics , Molecular Imaging/methods , Proto-Oncogene Proteins c-myc/genetics , RNA, Messenger/analysis , Cell Proliferation/drug effects , Fluorescence , Humans , MCF-7 Cells , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology
20.
Biosens Bioelectron ; 79: 41-7, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26686922

ABSTRACT

In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism. Furthermore, based on the principles of hydrodynamic focusing and diffusive mixing, different transient states during kinetics process were monitored and recorded. Thus, the combination of microfluidic technique and G-quadruplex luminescent probe will be potentially applied in the studies of intramolecular interactions and molecule recognition in the future.


Subject(s)
Aptamers, Nucleotide/chemistry , Coordination Complexes/chemistry , Iridium/chemistry , Luminescent Agents/chemistry , Vascular Endothelial Growth Factor A/analysis , Biosensing Techniques/methods , Cell Line , G-Quadruplexes , Humans , Limit of Detection , Luminescence , Luminescent Measurements/methods , Microfluidic Analytical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...