Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Oncogene ; 43(30): 2355-2370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879588

ABSTRACT

Humans are widely exposed to phthalates, a major chemical plasticizer that accumulates in the liver. However, little is known about the impact of chronic phthalate exposure on liver cancer development. In this study, we applied a long-term cell culture model by treating the liver cancer cell HepG2 and normal hepatocyte L02 to environmental dosage of monobutyl phthalate (MBP), the main metabolite of phthalates. Interestingly, we found that long-term MBP exposure significantly accelerated the growth of HepG2 cells in vitro and in vivo, but barely altered the function of L02 cells. MBP exposure triggered reprogramming of lipid metabolism in HepG2 cells, where cholesterol accumulation subsequently activated the IRE1α-XBP1s axis of the unfolded protein response. As a result, the XBP1s-regulated gene sets and pathways contributed to the increased aggressiveness of HepG2 cells. In addition, we also showed that MBP-induced cholesterol accumulation fostered an immunosuppressive microenvironment by promoting tumor-associated macrophage polarization toward the M2 type. Together, these results suggest that environmental phthalates exposure may facilitate liver cancer progression, and alerts phthalates exposure to patients who already harbor liver tumors.


Subject(s)
Cholesterol , Endoribonucleases , Liver Neoplasms , Phthalic Acids , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Cholesterol/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Phthalic Acids/toxicity , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Hep G2 Cells , Animals , Mice , Environmental Exposure/adverse effects , Signal Transduction/drug effects , Lipid Metabolism/drug effects , Unfolded Protein Response/drug effects , Tumor Microenvironment/drug effects
2.
Theranostics ; 14(3): 1065-1080, 2024.
Article in English | MEDLINE | ID: mdl-38250042

ABSTRACT

Neuroendocrine prostate cancer (NEPC) typically implies severe lethality and limited treatment options. The precise identification of NEPC cells holds paramount significance for both research and clinical applications, yet valid NEPC biomarker remains to be defined. Methods: Leveraging 11 published NE-related gene sets, 11 single-cell RNA-sequencing (scRNA-seq) cohorts, 15 bulk transcriptomic cohorts, and 13 experimental models of prostate cancer (PCa), we employed multiple advanced algorithms to construct and validate a robust NEPC risk prediction model. Results: Through the compilation of a comprehensive scRNA-seq reference atlas (comprising a total of 210,879 single cells, including 66 tumor samples) from 9 multicenter datasets of PCa, we observed inconsistent and inefficient performance among the 11 published NE gene sets. Therefore, we developed an integrative analysis pipeline, identifying 762 high-quality NE markers. Subsequently, we derived the NE cell-intrinsic gene signature, and developed an R package named NEPAL, to predict NEPC risk scores. By applying to multiple independent validation datasets, NEPAL consistently and accurately assigned NE feature and delineated PCa progression. Intriguingly, NEPAL demonstrated predictive capabilities for prognosis and therapy responsiveness, as well as the identification of potential epigenetic drivers of NEPC. Conclusion: The present study furnishes a valuable tool for the identification of NEPC and the monitoring of PCa progression through transcriptomic profiles obtained from both bulk and single-cell sources.


Subject(s)
Neuroendocrine Cells , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostate , Gene Expression Profiling , Transcriptome/genetics
3.
Toxicol In Vitro ; 82: 105367, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35476924

ABSTRACT

Benzophenones are widely used in industry and commonly added in many personal care products. However, the neurotoxicity, in particular neurodevelopmental toxicity, of benzophenone family chemicals and metabolites has not been fully elucidated. Our recent mechanistic study in mice showed that early life exposure to a major benzophenone metabolite, 4-hydroxybenzophenone (4HBP), disrupted endoplasmic reticulum (ER) proteostasis and evoked inflammatory response in hippocampal neural stem cells (NSCs), leading to cognitive dysfunction. Despite so, detailed inflammatory cytokine(s) that possibly mediate this toxicity remains to be defined and validated. In this study, we confirmed that 4HBP treatment inhibited the viability and sphere growth of mouse NSCs in vitro. Importantly, re-interrogation of the transcriptomic data of NSCs treated with 4HBP identified the top upregulated genes, wherein the chemokine Cxcl1 ranked first. Immunofluorescent staining and qRT-PCR validated the robust induction of Cxcl1 on the protein and mRNA levels upon 4HBP treatment. Furthermore, siRNA-mediated knockdown of Cxcl1 transiently blocked its expression and led to enhanced NSCs viability in the presence of 4HBP. Together, these in vitro results indicated that the adverse effect of benzophenones on NSCs is mediated, at least in part, by induction of the chemokine Cxcl1.


Subject(s)
Benzophenones , Hippocampus , Animals , Benzophenones/toxicity , Cell Proliferation , Cells, Cultured , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/pharmacology , Mice
4.
J Mol Neurosci ; 70(9): 1376-1384, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32424512

ABSTRACT

Lysophosphatidic acid (LPA), a ubiquitous phospholipid, plays a crucial role in the pathogenesis and pathophysiological process of neurological diseases, which constitute the pathological course after cerebral ischemia. Nevertheless, the molecular mechanisms associated with the pathogenic roles of LPA remain elusive. In this study, we evaluated the expression of the liver X receptor (LXR) and nuclear factor kappa B (NFκB) by Western blotting, quantified the levels of IL-1ß, IL-6, TNF-α, and LPA by ELISA, and evaluated apoptosis and infarct by TUNEL (terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling) and TTC (triphenyltetrazolium chloride) staining respectively in Sprague-Dawley (SD) rats after middle cerebral artery occlusion (MCAO). The levels of LPA, an extracellular signaling molecule, increased after ischemia and caused neurological injury effect, decreased the expression level of LXR, and increased the expression level of inflammatory factors (IL-1ß, IL-6, and TNF-α) via the NFκB signaling pathway. This elevated LPA-induced pathological process is one of the pathological reactions associated with ischemic brain injury. We present a direct or indirect connection between LPA and LXR in the pathophysiological process. In conclusion, we speculate that the inhibition of LPA generation and administration of LXR agonist may be explored as potential cerebral infarction treatment strategies.


Subject(s)
Blepharospasm/metabolism , Infarction, Middle Cerebral Artery/metabolism , Lysophospholipids/metabolism , Animals , Blepharospasm/genetics , Brain/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL