Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
J Pharm Biomed Anal ; 246: 116188, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38733761

ABSTRACT

The World Anti-Doping Agency (WADA) has included higenamine in the ß2 agonist (S3) category of the Prohibited List since 2017 due to its pharmacological effects on adrenergic receptors. Although higenamine contained in Chinese herbal medicines has been identified by previous studies, comprehensive investigation on the higenamine content of Chinese herbs and their concentrated preparations is still required. This study aimed to determine the levels of higenamine in Chinese medicinal materials and their concentrated preparations used in Chinese medicine prescriptions in Taiwan. The levels of higenamine in Chinese medicinal materials, including Cortex Phellodendri, Flos Caryophylli, Fructus Euodiae, Fructus Kochiae, Plumula Nelumbinis, Radix Aconiti Preparata, Radix Aconiti Lateralis Preparata, and Radix Asari, and their concentrated preparations were determined by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Our results showed that the amounts of higenamine were detected and quantified in studied Chinese medicinal materials and their concentrated preparations, except for Flos Caryophylli, Radix Aconiti Preparata, and Radix Aconiti Lateralis Preparata. Plumula Nelumbinis and Cortex Phellodendri have higher levels of higenamine when compared to other Chinese herbs tested in the present study. The highest level of higenamine was 2100 µg/g found in the Plumula Nelumbinis medicinal material. In contrast with Plumula Nelumbinis and Cortex Phellodendri, higenamine levels below 10 µg/g were found in other most of the studied Chinese medicinal materials and their concentrated preparations. This study confirmed that various Chinese herbs and their concentrated preparations contained higenamine, and it provided more coherent and comprehensive information for reducing the potential risk of higenamine misuse in sports.


Subject(s)
Alkaloids , Doping in Sports , Drugs, Chinese Herbal , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Doping in Sports/prevention & control , Alkaloids/analysis , Alkaloids/chemistry , Chromatography, Liquid/methods , Tetrahydroisoquinolines/analysis , Tetrahydroisoquinolines/chemistry , Humans , Substance Abuse Detection/methods , Taiwan , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry
2.
Cell Rep ; 42(11): 113385, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37938975

ABSTRACT

PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.


Subject(s)
Alternative Splicing , Breast Neoplasms , Humans , Female , Methylation , Alternative Splicing/genetics , Cell Transformation, Neoplastic/genetics , RNA/metabolism , Breast Neoplasms/genetics , Exons/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
3.
Catal Sci Technol ; 13(7): 2255-2260, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37025647

ABSTRACT

Single-atom catalysts often show exceptionally high performance per metal loading. However, the isolated atom sites tend to agglomerate during preparation and/or high-temperature reaction. Here we show that in the case of Rh/Al2O3 this deactivation can be prevented by dissolution/exsolution of metal atoms into/from the support. We design and synthesise a series of single-atom catalysts, characterise them and study the impact of exsolution in the dry reforming of methane at 700-900 °C. The catalysts' performance increases with increasing reaction time, as the rhodium atoms migrate from the subsurface to the surface. Although the oxidation state of rhodium changes from Rh(iii) to Rh(ii) or Rh(0) during catalysis, atom migration is the main factor affecting catalyst performance. The implications of these results for preparing real-life catalysts are discussed.

4.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36914119

ABSTRACT

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Subject(s)
Head and Neck Neoplasms , Ubiquinone , Humans , Animals , Mice , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Reactive Oxygen Species/metabolism , Mice, Nude , Squamous Cell Carcinoma of Head and Neck , Cell Death , Apoptosis , Cell Line, Tumor , Autophagy , Head and Neck Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Nuclear Proteins , Twist-Related Protein 1
5.
Arch Toxicol ; 97(4): 1047-1068, 2023 04.
Article in English | MEDLINE | ID: mdl-36847822

ABSTRACT

Coenzyme Q0 (CoQ0) is a derivative quinone from Antrodia camphorata (AC) that exerts anticancer activities. This study examined the anticancer attributes of CoQ0 (0-4 µM) on inhibited anti-EMT/metastasis and NLRP3 inflammasome, and altered Warburg effects via HIF-1α inhibition in triple-negative breast cancer (MDA-MB-231 and 468) cells. MTT assay, cell migration/invasion assays, Western blotting, immunofluorescence, metabolic reprogramming, and LC-ESI-MS were carried out to assess the therapy potential of CoQ0. CoQ0 inhibited HIF-1α expression and suppressed the NLRP3 inflammasome and ASC/caspase-1 expression, followed by downregulation of IL-1ß and IL-18 expression in MDA-MB-231 and 468 cells. CoQ0 ameliorated cancer stem-like markers by decreasing CD44 and increasing CD24 expression. Notably, CoQ0 modulated EMT by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal marker N-cadherin. CoQ0 inhibited glucose uptake and lactate accumulation. CoQ0 also inhibited HIF-1α downstream genes involved in glycolysis, such as HK-2, LDH-A, PDK-1, and PKM-2 enzymes. CoQ0 decreased extracellular acidification rate (ECAR), glycolysis, glycolytic capacity, and glycolytic reserve in MDA-MB-231 and 468 cells under normoxic and hypoxic (CoCl2) conditions. CoQ0 inhibited the glycolytic intermediates lactate, FBP, and 2/3-PG, and PEP levels. CoQ0 increased oxygen consumption rate (OCR), basal respiration, ATP production, maximal respiration, and spare capacity under normoxic and hypoxic (CoCl2) conditions. CoQ0 increased TCA cycle metabolites, such as citrate, isocitrate, and succinate. CoQ0 inhibited aerobic glycolysis and enhanced mitochondrial oxidative phosphorylation in TNBC cells. Under hypoxic conditions, CoQ0 also mitigated HIF-1α, GLUT1, glycolytic-related (HK-2, LDH-A, and PFK-1), and metastasis-related (E-cadherin, N-cadherin, and MMP-9) protein or mRNA expression in MDA-MB-231 and/or 468 cells. Under LPS/ATP stimulation, CoQ0 inhibited NLRP3 inflammasome/procaspase-1/IL-18 activation and NFκB/iNOS expression. CoQ0 also hindered LPS/ATP-stimulated tumor migration and downregulated LPS/ATP-stimulated N-cadherin and MMP-2/-9 expression. The present study revealed that suppression of HIF-1α expression caused by CoQ0 may contribute to inhibition of NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects of triple-negative breast cancers.


Subject(s)
Triple Negative Breast Neoplasms , Ubiquinone , Humans , Adenosine Triphosphate , Cadherins/genetics , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammasomes , Inflammation , Interleukin-18 , Lactate Dehydrogenase 5 , Lactates , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Ubiquinone/pharmacology
6.
Food Chem Toxicol ; 172: 113564, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563924

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 µg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.


Subject(s)
Apoptosis , Head and Neck Neoplasms , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/drug therapy , Reactive Oxygen Species/metabolism , Mice, Nude , Autophagy , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy
7.
Drug Test Anal ; 15(1): 75-83, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36097849

ABSTRACT

Beta-blockers have been prohibited by the World Anti-Doping Agency (WADA) in certain sports, but insufficient research data make it difficult to distinguish between therapeutic uses or misuses. This study aimed at investigating the urinary excretion pattern following beta-blocker ophthalmic drops and the potential risk of constituting an adverse analytical finding (AAF) in sports. Prescribed timolol and carteolol ophthalmic drops were used in healthy participants and glaucoma patients. The urine samples were then collected to investigate the urinary excretion pattern following acute and chronic administration of the above beta-blocker ophthalmic drops. The liquid chromatograph-tandem mass spectrometry method was applied for measuring urinary beta-blockers. Our results demonstrated that the levels of both urinary timolol and carteolol exceeded the minimum reporting levels (MRL) following acute and chronic administration. The highest levels of urinary timolol and carteolol observed in the present study were 255.7 and 923.8 ng/ml, respectively. Regarding the acute administration of timolol ophthalmic drop, 26.19 (11/42) of urine samples were detected with timolol higher than the MRL in timed and random sampling. In contrast, the acute administration of carteolol ophthalmic drops made the carteolol levels higher than the MRL among most urine samples. On the other hand, 36.36% (4/11) of urine samples were detected with beta-blockers higher than the MRL during the chronic administration of timolol and carteolol ophthalmic drops. In the context of receiving ophthalmic beta-blocker medications, the present study has highlighted the potential risk of constituting an AAF in specific sports and suggests strengthening athletes' awareness of therapeutic use exemptions.


Subject(s)
Carteolol , Sports , Humans , Timolol/adverse effects , Carteolol/adverse effects , Adrenergic beta-Antagonists , Ophthalmic Solutions/adverse effects
8.
Probiotics Antimicrob Proteins ; 15(2): 312-325, 2023 04.
Article in English | MEDLINE | ID: mdl-34449056

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by midbrain dopaminergic neuronal loss and subsequent physical impairments. Levodopa manages symptoms best, while deep brain stimulation (DBS) is effective for advanced PD patients; however, side effects occur with the diminishing therapeutic window. Recently, Lactiplantibacillus plantarum PS128 (PS128) was found to elevate dopamine levels in rodent brains, suggesting its potential to prevent PD. Here, the therapeutic efficacy of PS128 was examined in the 6-hydroxydopamine rat PD model. Suppression of the power spectral density of beta oscillations (beta PSD) in the primary motor cortex (M1) was recorded as the indicator of disease progression. We found that 6 weeks of daily PS128 supplementation suppressed M1 beta PSD as well as did levodopa and DBS. Long-term normalization of M1 beta PSD was found in PS128-fed rats, whereas levodopa and DBS showed only temporal effects. PS128 + levodopa and PS128 + DBS exhibited better therapeutic effects than did levodopa + DBS or either alone. Significantly improved motor functions in PS128-fed rats were correlated with normalization of M1 beta PSD. Brain tissue analyses further demonstrated the role of PS128 in dopaminergic neuroprotection and the enhanced availability of neurotransmitters. These findings suggest that psychobiotic PS128 might be used alongside conventional therapies to treat PD patients.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Rats , Animals , Parkinson Disease/drug therapy , Levodopa/adverse effects , Oxidopamine/adverse effects , Subthalamic Nucleus/physiology , Dopamine/therapeutic use
9.
Sci Rep ; 11(1): 10790, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031457

ABSTRACT

The regenerative effect of Epimedium and its major bioactive flavonoid icariin (ICA) have been documented in traditional medicine, but their effect on sarcopenia has not been evaluated. The aim of this study was to investigate the effects of Epimedium extract (EE) on skeletal muscle as represented by differentiated C2C12 cells. Here we demonstrated that EE and ICA stimulated C2C12 myotube hypertrophy by activating several, including IGF-1 signal pathways. C2C12 myotube hypertrophy was demonstrated by enlarged myotube and increased myosin heavy chains (MyHCs). In similar to IGF-1, EE/ICA activated key components of the IGF-1 signal pathway, including IGF-1 receptor. Pre-treatment with IGF-1 signal pathway specific inhibitors such as picropodophyllin, LY294002, and rapamycin attenuated EE induced myotube hypertrophy and MyHC isoform overexpression. In a different way, EE induced MHyC-S overexpression can be blocked by AMPK, but not by mTOR inhibitor. On the level of transcription, EE suppressed myostatin and MRF4 expression, but did not suppress atrogenes MAFbx and MuRF1 like IGF-1 did. Differential regulation of MyHC isoform and atrogenes is probably due to inequivalent AKT and AMPK phosphorylation induced by EE and IGF-1. These findings suggest that EE/ICA stimulates pathways partially overlapping with IGF-1 signaling pathway to promote myotube hypertrophy.


Subject(s)
Chromones/pharmacology , Flavonoids/pharmacology , Morpholines/pharmacology , Myoblasts/cytology , Podophyllotoxin/analogs & derivatives , Signal Transduction/drug effects , Sirolimus/pharmacology , Animals , Cell Differentiation , Cell Line , Gene Expression Regulation/drug effects , Hypertrophy , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mice , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Podophyllotoxin/pharmacology
10.
Nat Commun ; 12(1): 1946, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782401

ABSTRACT

Numerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 suppresses cancer cell growth and their co-inhibition shows synergistic effects, suggesting them as targets for cancer therapy.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Prostatic Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Alternative Splicing , Amino Acid Sequence , Arginine/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Enzyme Inhibitors/pharmacology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HEK293 Cells , Heterogeneous Nuclear Ribonucleoprotein A1/antagonists & inhibitors , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Male , Methylation/drug effects , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spliceosomes/drug effects , Spliceosomes/genetics , Spliceosomes/metabolism , Substrate Specificity
11.
Nutrients ; 14(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35010953

ABSTRACT

Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (-10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1ß, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.


Subject(s)
Exercise/adverse effects , Lipid Peroxidation/drug effects , Muscular Diseases/drug therapy , Panax/chemistry , Phytotherapy , Plant Extracts/therapeutic use , Cytokines/genetics , Cytokines/metabolism , Double-Blind Method , Gene Expression Regulation/drug effects , Humans , Inflammation/drug therapy , Male , Muscular Diseases/etiology , Plant Extracts/chemistry , Young Adult
12.
J Neuroinflammation ; 17(1): 319, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33100217

ABSTRACT

BACKGROUND: Neuroinflammation mediated by microglia plays a central role in the pathogenesis of perinatal/neonatal brain injury, including cerebral palsy (CP). Therapeutics mitigating neuroinflammation potentially provide an effective strategy to slow the disease progression and rescue normal brain development. Building on our prior results which showed that a generation-4 hydroxyl poly(amidoamine) (PAMAM) dendrimer could deliver drugs specifically to activated glia from systemic circulation, we evaluated the sustained efficacy of a generation-6 (G6) hydroxyl-terminated PAMAM dendrimer that showed a longer blood circulation time and increased brain accumulation. N-acetyl-L-cysteine (NAC), an antioxidant and anti-inflammatory agent that has high plasma protein binding properties and poor brain penetration, was conjugated to G6-PAMAM dendrimer-NAC (G6D-NAC). The efficacy of microglia-targeted G6D-NAC conjugate was evaluated in a clinically relevant rabbit model of CP, with a mild/moderate CP phenotype to provide a longer survival of untreated CP kits, enabling the assessment of sustained efficacy over 15 days of life. METHODS: G6D-NAC was conjugated and characterized. Cytotoxicity and anti-inflammatory assays were performed in BV-2 microglial cells. The efficacy of G6D-NAC was evaluated in a rabbit model of CP. CP kits were randomly divided into 5 groups on postnatal day 1 (PND1) and received an intravenous injection of a single dose of PBS, or G6D-NAC (2 or 5 mg/kg), or NAC (2 or 5 mg/kg). Neurobehavioral tests, microglia morphology, and neuroinflammation were evaluated at postnatal day 5 (PND5) and day 15 (PND15). RESULTS: A single dose of systemic 'long circulating' G6D-NAC showed a significant penetration across the impaired blood-brain-barrier (BBB), delivered NAC specifically to activated microglia, and significantly reduced microglia-mediated neuroinflammation in both the cortex and cerebellum white matter areas. Moreover, G6D-NAC treatment significantly improved neonatal rabbit survival rate and rescued motor function to nearly healthy control levels at least up to 15 days after birth (PND15), while CP kits treated with free NAC died before PND9. CONCLUSIONS: Targeted delivery of therapeutics to activated microglia in neonatal brain injury can ameliorate pro-inflammatory microglial responses to injury, promote survival rate, and improve neurological outcomes that can be sustained for a long period. Appropriate manipulation of activated microglia enabled by G6D-NAC can impact the injury significantly beyond inflammation.


Subject(s)
Biocompatible Materials/administration & dosage , Cerebral Palsy/drug therapy , Dendrimers/administration & dosage , Disease Models, Animal , Nanomedicine/methods , Animals , Animals, Newborn , Cell Line , Cerebral Palsy/chemically induced , Cerebral Palsy/metabolism , Dose-Response Relationship, Drug , Female , Lipopolysaccharides/toxicity , Male , Mice , Microglia/drug effects , Microglia/metabolism , Pregnancy , Rabbits , Time Factors , Treatment Outcome
13.
Molecules ; 25(7)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244796

ABSTRACT

Praeruptorin C (PC) reportedly has beneficial effects in terms of antiinflammation, antihypertension, and antiplatelet aggregation, and it potentially has anticancer activity. However, the effect of PC on human non-small cell lung cancer (NSCLC) is largely unknown. Compared with the effects of praeruptorin A and praeruptorin B, we observed that PC significantly suppressed cell proliferation, colony formation, wound closure, and migration and invasion of NSCLC cells. It induced cell cycle arrest in the G0/G1 phase, downregulated cyclin D1 protein, and upregulated p21 protein. PC also significantly reduced the expression of cathepsin D (CTSD). In addition, the phosphorylation/activation of the ERK1/2 signalling pathway was significantly suppressed in PC-treated NSCLC cells. Cotreatment with PC and U0126 synergistically inhibited CTSD expression, cell migration, and cell invasion, which suggests that the ERK1/2 signalling pathway is involved in the downregulation of CTSD expression and invasion activity of NSCLC cells by PC. These findings are the first to demonstrate the inhibitory effects of PC in NSCLC progression. Therefore, PC may represent a novel strategy for treating NSCLC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cathepsin D/metabolism , Coumarins/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cathepsin D/genetics , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival , Drugs, Chinese Herbal , Gene Expression Regulation , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Neoplasm Metastasis
14.
Methods Mol Biol ; 1777: 193-207, 2018.
Article in English | MEDLINE | ID: mdl-29744836

ABSTRACT

Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short ß-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.


Subject(s)
Peptides/chemical synthesis , Amino Acids/chemistry , Chromatography, High Pressure Liquid , Molecular Structure , Peptides/chemistry , Peptides/isolation & purification , Solid-Phase Synthesis Techniques , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface-Active Agents/chemistry
15.
Biomater Sci ; 6(1): 216-224, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29214247

ABSTRACT

Supramolecular filament hydrogels are an emerging class of biomaterials that hold great promise for regenerative medicine, tissue engineering, and drug delivery. However, fine-tuning of their bulk mechanical properties at the molecular level without altering their network structures remains a significant challenge. Here we report an isomeric strategy to construct amphiphilic peptides through the conjugation of isomeric hydrocarbons to influence the local viscoelastic properties of their resulting supramolecular hydrogels. In this case, the packing requirements of the chosen isomeric hydrocarbons within the supramolecular filaments are dictated by their atomic arrangements at the molecular and intermolecular levels. Atomistic molecular dynamics simulations suggest that this design strategy can subtly alter the molecular packing at the interface between the peptide domain and the hydrophobic core of the supramolecular assemblies, without changing both the filament width and morphology. Our results from wide-angle X-ray scattering and molecular simulations further confirm that alterations to the intermolecular packing at the interface impact the strength and degree of hydrogen bonding within the peptide domains. This subtle difference in the isomeric hydrocarbon design and their consequent packing difference led to variations in the persistence length of the individual supramolecular filaments. Microrheological analysis reveals that this difference in filament stiffness enables the fine-tuning of the mechanical properties of the hydrogel at the macroscopic scale. We believe that this isomeric platform provides an innovative method to tune the local viscoelastic properties of supramolecular polymeric hydrogels without necessarily altering their network structures.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Peptides/chemistry , Drug Delivery Systems/methods , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Tissue Engineering
16.
Bioconjug Chem ; 28(11): 2715-2728, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28937754

ABSTRACT

Recombinant protein-polymer scaffolds such as elastin-like polypeptides (ELPs) offer drug-delivery opportunities including biocompatibility, monodispersity, and multifunctionality. We recently reported that the fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses tumor growth in breast cancer xenografts, and reduces side effects observed with free-drug controls. This new report significantly advances this carrier strategy by demonstrating the coassembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized that includes the canonical integrin-targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio coassemble into bifunctional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Coassembled nanoparticles were evaluated for bifunctionality by performing in vitro cell-binding and drug-retention assays and in vivo MDA-MB-468 breast tumor regression and tumor-accumulation studies. The bifunctional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/drug therapy , Drug Carriers/chemistry , Elastin/chemistry , Integrins/metabolism , Sirolimus/administration & dosage , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Breast/drug effects , Breast/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Delivery Systems , Female , Humans , Mice , Mice, Nude , Nanoparticles/chemistry , Peptides/chemistry , Sirolimus/pharmacokinetics , Sirolimus/pharmacology , Sirolimus/therapeutic use
17.
Medicine (Baltimore) ; 96(24): e7185, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28614257

ABSTRACT

Radiotherapy (RT) is useful in managing cancer diseases. In clinical practice, early initiation of RT is crucial for enhancing tumor control. But, delivering precise RT requires a series of pre-RT working processes in a tight staff-cooperation manner. In this regard, using information system to conduct e-control and e-alerts has been suggested to improve practice effectiveness; however, this effect is not well defined in a real-world RT setting.We designed an information system to perform e-control and e-alerts for the whole process of pre-RT workflow to shorten processing time, to improve overall staff satisfaction, and to enhance working confidence.A quality-improving study conducted in a large RT center.Externally validated data were retrospectively analyzed for comparison before (from Sep. 2012 to Dec. 2012, n = 223) and after (from Sep. 2013 to Dec. 2013, n = 240) implementation of pre-RT e-control and e-alerts.Applying the e-control with delay-working e-alerts in pre-RT workflow was the main intervention.Nine workstations were identified in pre-RT workflow. The primary outcome measure was the processing time in each pre-RT workstations before and after implementing the e-control and e-alerts. Secondary measures were staff-working confidence and near-missing cases during the process of pre-RT workflow.After implementing e-control, overall processing time of pre-RT workflow was shortened from 12.2 days to 8.9 days (P < .001). Follow-up data (till Jul. 2016) showed a durable effect of 9.2 days, being still below the predefined threshold of <10 days.Using a multidisciplinary-cooperating information system is useful to conduct e-control and e-alerts in the whole process of pre-RT workflow. Clinical effectiveness, staff satisfaction, and working confidence are able to be enhanced obviously.


Subject(s)
Internet , Quality Improvement , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Workflow , Attitude of Health Personnel , Follow-Up Studies , Health Personnel/psychology , Humans , Medical Errors/prevention & control , Personnel Turnover , Retrospective Studies , Time Factors
18.
Ann Thorac Surg ; 104(3): 891-898, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28366468

ABSTRACT

BACKGROUND: Dendrimer nanoparticle therapies represent promising new approaches to drug delivery, particularly in diseases associated with inflammatory injury. However, their application has not been fully explored in models of acute myocardial ischemia (MI) and reperfusion injury. METHODS: White male New Zealand rabbits underwent left thoracotomy with 30-minute temporary left anterior descending artery occlusion and MI confirmed by electrocardiography and histology (MI rabbits, n = 9), or left thoracotomy and pericardial opening for 30 minutes but no left anterior descending artery occlusion (control [C] rabbits, n = 9) rabbits. Following the 30-minute period, a dendrimer (generation 6 dendrimer conjugated to cyanine-5 fluorescent dye [G6-Cy5], 6.7 nm diameter) was administered intravenously and the chest closed in layers. Animals were sacrificed at 3 hours (3 MI, 3 C), 24 hours (3 MI, 3 C), or 48 hours (3 MI, 3 C) postsurgery. RESULTS: As compared to controls, MI rabbits had twofold G6-Cy5 uptake in the myocardial anterior wall as compared to the same region in nonischemic control rabbits at 24 hours postsurgery (6.01 ± 0.57 µg/g versus 2.85 ± 0.85 µg/g; p = 0.04). This trend was also present at 48 hours (6.38 ± 1.53 µg/g versus 3.95 ± 0.60 µg/g, p = 0.21) and was qualitatively evident on confocal microscopy. G6-Cy5 half-life in serum was approximately 12 hours, with 22% of the injected G6-Cy5 dose remaining at 48 hours. CONCLUSIONS: This study demonstrates for the first time that dendrimer nanodevices selectively localize in ischemic as compared to healthy myocardium. This indicates that dendrimer nanodevices are promising agents to deliver drugs specifically to the ischemic myocardium to attenuate the injury. Subsequent studies will assess the efficacy of a dendrimer-drug conjugate in ameliorating reperfusion injury following MI.


Subject(s)
Dendrimers/pharmacokinetics , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Nanoparticles , Animals , Dendrimers/administration & dosage , Disease Models, Animal , Electrocardiography , Male , Microscopy, Confocal , Myocardial Reperfusion Injury/diagnosis , Myocardial Reperfusion Injury/metabolism , Myocardium/pathology , Rabbits
19.
Acta Pharmacol Sin ; 38(6): 874-884, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28260797

ABSTRACT

The conjugation of small molecular hydrophobic anticancer drugs onto a short peptide with overall hydrophilicity to create self-assembling drug amphiphiles offers a new prodrug strategy, producing well-defined, discrete nanostructures with a high and quantitative drug loading. Here we show the detailed synthesis procedure and how the molecular structure can influence the synthesis of the self-assembling prodrugs and the physicochemical properties of their assemblies. A series of camptothecin-based drug amphiphiles were synthesized via combined solid- and solution-phase synthetic techniques, and the physicochemical properties of their self-assembled nanostructures were probed using a number of imaging and spectroscopic techniques. We found that the number of incorporated drug molecules strongly influences the rate at which the drug amphiphiles are formed, exerting a steric hindrance toward any additional drugs to be conjugated and necessitating extended reaction time. The choice of peptide sequence was found to affect the solubility of the conjugates and, by extension, the critical aggregation concentration and contour length of the filamentous nanostructures formed. In the design of self-assembling drug amphiphiles, the number of conjugated drug molecules and the choice of peptide sequence have significant effects on the nanostructures formed. These observations may allow the fine-tuning of the physicochemical properties for specific drug delivery applications, ie systemic vs local delivery.


Subject(s)
Antineoplastic Agents/chemical synthesis , Camptothecin/chemical synthesis , Drug Design , Peptides/chemical synthesis , Surface-Active Agents/chemical synthesis , Antineoplastic Agents/chemistry , Camptothecin/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Peptides/chemistry , Surface-Active Agents/chemistry
20.
J Control Release ; 249: 173-182, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28137632

ABSTRACT

Hypothermic circulatory arrest (HCA) provides neuroprotection during cardiac surgery but entails an ischemic period that can lead to excitotoxicity, neuroinflammation, and subsequent neurologic injury. Hydroxyl polyamidoamine (PAMAM) dendrimers target activated microglia and damaged neurons in the injured brain, and deliver therapeutics in small and large animal models. We investigated the effect of dendrimer size on brain uptake and explored the pharmacokinetics in a clinically-relevant canine model of HCA-induced brain injury. Generation 6 (G6, ~6.7nm) dendrimers showed extended blood circulation times and increased accumulation in the injured brain compared to generation 4 dendrimers (G4, ~4.3nm), which were undetectable in the brain by 48h after final administration. High levels of G6 dendrimers were found in cerebrospinal fluid (CSF) of injured animals with a CSF/serum ratio of ~20% at peak, a ratio higher than that of many neurologic pharmacotherapies already in clinical use. Brain penetration (measured by drug CSF/serum level) of G6 dendrimers correlated with the severity of neuroinflammation observed. G6 dendrimers also showed decreased renal clearance rate, slightly increased liver and spleen uptake compared to G4 dendrimers. These results, in a large animal model, may offer insights into the potential clinical translation of dendrimers.


Subject(s)
Brain/metabolism , Dendrimers/chemistry , Dendrimers/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Delivery Systems , Animals , Brain Injuries/drug therapy , Brain Injuries/metabolism , Dendrimers/administration & dosage , Disease Models, Animal , Dogs , Drug Carriers/administration & dosage , Kidney/metabolism , Liver/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL