Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Clin Invest ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713523

ABSTRACT

The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cells activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could impact nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin ß1 to induce Wnts in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.

2.
FASEB J ; 38(7): e23597, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581235

ABSTRACT

Sepsis is a life-threatening condition that occurs when the body responds to an infection but subsequently triggers widespread inflammation and impaired blood flow. These pathologic responses can rapidly cause multiple organ dysfunction or failure either one by one or simultaneously. The fundamental common mechanisms involved in sepsis-induced multiple organ dysfunction remain unclear. Here, employing quantitative global and phosphoproteomics, we examine the liver's temporal proteome and phosphoproteome changes after moderate sepsis induced by cecum ligation and puncture. In total, 4593 global proteins and 1186 phosphoproteins according to 3275 phosphosites were identified. To characterize the liver-kidney comorbidity after sepsis, we developed a mathematical model and performed cross-analyses of liver and kidney proteome data obtained from the same set of mice. Beyond immune response, we showed the commonly disturbed pathways and key regulators of the liver-kidney comorbidity are linked to energy metabolism and consumption. Our data provide open resources to understand the communication between the liver and kidney as they work to fight infection and maintain homeostasis.


Subject(s)
Proteome , Sepsis , Mice , Animals , Multiple Organ Failure/complications , Multiple Organ Failure/pathology , Liver/metabolism , Kidney/metabolism , Sepsis/metabolism , Disease Models, Animal
3.
Cell Rep ; 43(5): 114144, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656874

ABSTRACT

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Subject(s)
Pilocarpine , Proto-Oncogene Proteins c-abl , Seizures , Animals , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Mice , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Protein Kinase Inhibitors/pharmacology , Humans , Phosphorylation/drug effects , Apoptosis/drug effects , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Mice, Inbred C57BL
4.
bioRxiv ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38529509

ABSTRACT

Brain metastasis of HER2+ breast cancer occurs in about 50% of all women with metastatic HER2+ breast cancer and confers poor prognosis for patients. Despite effective HER2-targeted treatments of peripheral HER2+ breast cancer with Trastuzumab +/-HER2 inhibitors, limited brain permeability renders these treatments inefficient for HER2+ breast cancer brain metastasis (BCBM). The scarcity of suitable patient-derived in-vivo models for HER2+ BCBM has compromised the study of molecular mechanisms that promote growth and therapeutic resistance in brain metastasis. We have generated and characterized new HER2+ BCBM cells (BCBM94) isolated from a patient HER2+ brain metastasis. Repeated hematogenic xenografting of BCBM94 consistently generated BCBM in mice. The clinically used receptor tyrosine kinase inhibitor (RTKi) Lapatinib blocked phosphorylation of all ErbB1-4 receptors and induced the intrinsic apoptosis pathway in BCBM94. Neuregulin-1 (NRG1), a ligand for ErbB3 and ErbB4 that is abundantly expressed in the brain, was able to rescue Lapatinib-induced apoptosis and clonogenic ability in BCBM94 and in HER2+ BT474. ErbB3 was essential to mediate the NRG1-induced survival pathway that involved PI3K-AKT signalling and the phosphorylation of BAD at serine 136 to prevent apoptosis. High throughput RTKi screening identified the brain penetrable Poziotinib as highly potent compound to reduce cell viability in HER2+ BCBM in the presence of NRG1. Successful in-vivo ablation of BCBM94- and BT474-derived HER2+ brain tumors was achieved upon two weeks of treatment with Poziotinib. MRI revealed BCBM remission upon poziotinib, but not with Lapatinib treatment. In conclusion, we have established a new patient-derived HER2+ BCBM in-vivo model and identified Poziotinib as highly efficacious RTKi with excellent brain penetrability that abrogated HER2+ BCBM brain tumors in our mouse models.

5.
J Org Chem ; 88(20): 14292-14302, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37768859

ABSTRACT

A series of calix[4]arenes with upper-rim sulfanylpropyl and p-methoxyphenylazo groups (compounds 8-10) were synthesized and found to be effective chromogenic sensors for selectively detecting Hg2+, Hg+, and Ag+ ions among 18 screened metal perchlorates. In comparison to previously reported diallyl- and dithioacetoxypropyl-substituted calix[4]arenes (5, 6, 14, 15, and 16) and the newly synthesized compound 7, the distal (5,17)-disulfanylpropyl-substituted di-p-methoxyphenylazocalix[4]arene 9 demonstrated superior performance with a limit of detection of 0.028 µM for Hg2+ ions in a chloroform/methanol (v/v = 399/1) cosolvent. Job's plot revealed 1:1 binding stoichiometry for all these upper-rim sulfanylpropyl- and p-methoxyphenylazo-substituted calix[4]arenes 8-10 with Hg2+ ions, and Benesi-Hildebrand plots from ultraviolet/visible (UV-vis) titration spectra were used for the determination of their association constants. Our findings indicated that the distal orientation of two p-methoxyphenylazo and two sulfanylpropyl groups in calix[4]arenes 8-10 is more favorable for binding Hg2+ ions than the proximal (5,11-) orientation; moreover, the adjacent sulfanylpropyl groups exhibited superior coordination as ligands compared to the allyl and thioacetoxypropyl groups. Notably, compounds 8-10 displayed a comparable trend in their association with Ag+ ions, albeit with 1 order of magnitude lower binding constants and a distinct binding mode compared to Hg2+ ions. UV-vis spectroscopy, Job's plots, high-resolution mass spectrometry, and 1H nuclear magnetic resonance titration studies are presented and discussed.

6.
PLoS Pathog ; 18(12): e1011020, 2022 12.
Article in English | MEDLINE | ID: mdl-36542660

ABSTRACT

BACKGROUND: For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS: Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS: Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Streptococcus pneumoniae/metabolism , Influenza A virus/genetics , Virulence , Galactose/metabolism , Multiomics , Proteomics , Influenza, Human/genetics , Influenza, Human/complications
7.
Sci Data ; 9(1): 702, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385149

ABSTRACT

Neutrophils are the most abundant type of white blood cells in humans with biological roles relevant to inflammation, and fighting off infections. Neutrophil Extracellular Traps (NETs) act as enxogenous agents controlling invasion by bacteria, viruses, fungi, metabolic, and traumatic agents. Traditionally, studies have focused on elucidating molecular and cellular pathways preceding NET formation. Here, we developed a model to decode the human genome and proteome of developted NETs. Via in vitro system to differentiate HL-60 human myeloid cell line into neutrophil extracellular trap (ecTrap) producing cells, we isolated and captured ectrap derived DNA and proteins for shotgun sequencing. The genomic sequences revealed accurate delineation of gene composition including immune response genes and mitochondrial enrichment, while providing a reference database for future interrogation. Shotgun proteomics showed global proteins in differentiated cells with specific immune pathways when compared to undifferentiated counterparts. Coupled with omics' approaches, we validated our system by functional assays and began to dissect host-microbial interactions. Our work provides a new understanding of the genomic and proteomic sequences, establishing the first human database deposition of neutrophil extracellular traps.


Subject(s)
Extracellular Traps , Humans , Genome, Human , Neutrophils , Proteome , Proteomics
8.
J Med Chem ; 65(12): 8303-8331, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35696646

ABSTRACT

The perinucleolar compartment (PNC) is a dynamic subnuclear body found at the periphery of the nucleolus. The PNC is enriched with RNA transcripts and RNA-binding proteins, reflecting different states of genome organization. PNC prevalence positively correlates with cancer progression and metastatic capacity, making it a useful marker for metastatic cancer progression. A high-throughput, high-content assay was developed to identify novel small molecules that selectively reduce PNC prevalence in cancer cells. We identified and further optimized a pyrrolopyrimidine series able to reduce PNC prevalence in PC3M cancer cells at submicromolar concentrations without affecting cell viability. Structure-activity relationship exploration of the structural elements necessary for activity resulted in the discovery of several potent compounds. Analysis of in vitro drug-like properties led to the discovery of the bioavailable analogue, metarrestin, which has shown potent antimetastatic activity with improved survival in rodent models and is currently being evaluated in a first-in-human phase 1 clinical trial.


Subject(s)
Cell Nucleus , Neoplasms , Biomarkers/metabolism , Cell Nucleolus/metabolism , Cell Nucleolus/pathology , Cell Nucleus/metabolism , Humans , Neoplasms/metabolism , Pyrimidines , Pyrroles
9.
Medicina (Kaunas) ; 58(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35334536

ABSTRACT

Background and Objectives: Traditional assessment of the readiness for the weaning from the mechanical ventilator (MV) needs respiratory parameters in a spontaneous breath. Exempted from the MV disconnecting and manual measurements of weaning parameters, a prediction model based on parameters from MV and electronic medical records (EMRs) may help the assessment before spontaneous breath trials. The study aimed to develop prediction models using machine learning techniques with parameters from the ventilator and EMRs for predicting successful ventilator mode shifting in the medical intensive care unit. Materials and Methods: A retrospective analysis of 1483 adult patients with mechanical ventilators for acute respiratory failure in three medical intensive care units between April 2015 and October 2017 was conducted by machine learning techniques to establish the predicting models. The input candidate parameters included ventilator setting and measurements, patients' demographics, arterial blood gas, laboratory results, and vital signs. Several classification algorithms were evaluated to fit the models, including Lasso Regression, Ridge Regression, Elastic Net, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Machine, and Artificial Neural Network according to the area under the Receiver Operating Characteristic curves (AUROC). Results: Two models were built to predict the success shifting from full to partial support ventilation (WPMV model) or from partial support to the T-piece trial (sSBT model). In total, 3 MV and 13 nonpulmonary features were selected for the WPMV model with the XGBoost algorithm. The sSBT model was built with 8 MV and 4 nonpulmonary features with the Random Forest algorithm. The AUROC of the WPMV model and sSBT model were 0.76 and 0.79, respectively. Conclusions: The weaning predictions using machine learning and parameters from MV and EMRs have acceptable performance. Without manual measurements, a decision-making system would be feasible for the continuous prediction of mode shifting when the novel models process real-time data from MV and EMRs.


Subject(s)
Machine Learning , Ventilators, Mechanical , Adult , Feasibility Studies , Humans , Intensive Care Units , Retrospective Studies
10.
mBio ; 13(1): e0325721, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089061

ABSTRACT

For over a century, it has been reported that primary influenza infection promotes the development of a lethal form of bacterial pulmonary disease. More recently, pneumonia events caused by both viruses and bacteria have been directly associated with cardiac damage. Importantly, it is not known whether viral-bacterial synergy extends to extrapulmonary organs such as the heart. Using label-free quantitative proteomics and molecular approaches, we report that primary infection with pandemic influenza A virus leads to increased Streptococcus pneumoniae translocation to the myocardium, leading to general biological alterations. We also observed that each infection alone led to proteomic changes in the heart, and these were exacerbated in the secondary bacterial infection (SBI) model. Gene ontology analysis of significantly upregulated proteins showed increased innate immune activity, oxidative processes, and changes to ion homeostasis during SBI. Immunoblots confirmed increased complement and antioxidant activity in addition to increased expression of angiotensin-converting enzyme 2. Using an in vitro model of sequential infection in human cardiomyocytes, we observed that influenza enhances S. pneumoniae cytotoxicity by promoting oxidative stress enhancing bacterial toxin-induced necrotic cell death. Influenza infection was found to increase receptors that promote bacterial adhesion, such as polymeric immunoglobulin receptor and fibronectin leucine-rich transmembrane protein 1 in cardiomyocytes. Finally, mice deficient in programmed necrosis (i.e., necroptosis) showed enhanced innate immune responses, decreased virus-associated pathways, and promotion of mitochondrial function upon SBI. The presented results provide the first in vivo evidence that influenza infection promotes S. pneumoniae infiltration, necrotic damage, and proteomic remodeling of the heart. IMPORTANCE Adverse cardiac events are a common complication of viral and bacterial pneumonia. For over a century, it has been recognized that influenza infection promotes severe forms of pulmonary disease mainly caused by the bacterium Streptococcus pneumoniae. The extrapulmonary effects of secondary bacterial infections to influenza virus are not known. In the present study, we used a combination of quantitative proteomics and molecular approaches to assess the underlying mechanisms of how influenza infection promotes bacteria-driven cardiac damage and proteome remodeling. We further observed that programmed necrosis (i.e., necroptosis) inhibition leads to reduced damage and proteome changes associated with health.


Subject(s)
Coinfection , Influenza, Human , Orthomyxoviridae Infections , Pneumococcal Infections , Pneumonia, Bacterial , Animals , Humans , Mice , Coinfection/microbiology , Necrosis , Pandemics , Pneumococcal Infections/microbiology , Proteome , Proteomics , Streptococcus pneumoniae/physiology , Heart Diseases/metabolism
11.
J Virol ; 95(20): e0101021, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319784

ABSTRACT

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Immunity, Innate , Proteome , Transcriptome , Animals , COVID-19/genetics , COVID-19/virology , Disease Models, Animal , Gene Ontology , Heart/virology , Kidney/metabolism , Kidney/virology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mesocricetus , Myocardium/metabolism , Phosphoproteins/metabolism , Proteomics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load
12.
Front Med (Lausanne) ; 8: 667462, 2021.
Article in English | MEDLINE | ID: mdl-34249966

ABSTRACT

Biofilms composed of multiple microorganisms colonize the surfaces of indwelling urethral catheters that are used serially by neurogenic bladder patients and cause chronic infections. Well-adapted pathogens in this niche are Escherichia coli, Proteus, and Enterococcus spp., species that cycle through adhesion and multilayered cell growth, trigger host immune responses, are starved off nutrients, and then disperse. Viable microbial foci retained in the urinary tract recolonize catheter surfaces. The molecular adaptations of bacteria in catheter biofilms (CBs) are not well-understood, promising new insights into this pathology based on host and microbial meta-omics analyses from clinical specimens. We examined catheters from nine neurogenic bladder patients longitudinally over up to 6 months. Taxonomic analyses from 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed that 95% of all catheter and corresponding urinary pellet (UP) samples contained bacteria. CB biomasses were dominated by Enterobacteriaceae spp. and often accompanied by lactic acid and anaerobic bacteria. Systemic antibiotic drug treatments of patients resulted in either transient or lasting microbial community perturbations. Neutrophil effector proteins were abundant not only in UP but also CB samples, indicating their penetration of biofilm surfaces. In the context of one patient who advanced to a kidney infection, Proteus mirabilis proteomic data suggested a combination of factors associated with this disease complication: CB biomasses were high; the bacteria produced urease alkalinizing the pH and triggering urinary salt deposition on luminal catheter surfaces; P. mirabilis utilized energy-producing respiratory systems more than in CBs from other patients. The NADH:quinone oxidoreductase II (Nqr), a Na+ translocating enzyme not operating as a proton pump, and the nitrate reductase A (Nar) equipped the pathogen with electron transport chains promoting growth under hypoxic conditions. Both P. mirabilis and E. coli featured repertoires of transition metal ion acquisition systems in response to human host-mediated iron and zinc sequestration. We discovered a new drug target, the Nqr respiratory system, whose deactivation may compromise P. mirabilis growth in a basic pH milieu. Animal models would not allow such molecular-level insights into polymicrobial biofilm metabolism and interactions because the complexity cannot be replicated.

13.
mBio ; 12(3)2021 05 04.
Article in English | MEDLINE | ID: mdl-33947761

ABSTRACT

Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC, also called CbpA) are major virulence factors of Streptococcus pneumoniae (Spn). These surface-exposed choline-binding proteins (CBPs) function independently to inhibit opsonization, neutralize antimicrobial factors, or serve as adhesins. PspA and PspC both carry a proline-rich domain (PRD) whose role, other than serving as a flexible connector between the N-terminal and C-terminal domains, was up to this point unknown. Herein, we demonstrate that PspA binds to lactate dehydrogenase (LDH) released from dying host cells during infection. Using recombinant versions of PspA and isogenic mutants lacking PspA or specific domains of PspA, this property was mapped to a conserved 22-amino-acid nonproline block (NPB) found within the PRD of most PspAs and PspCs. The NPB of PspA had specific affinity for LDH-A, which converts pyruvate to lactate. In a mouse model of pneumonia, preincubation of Spn carrying NPB-bearing PspA with LDH-A resulted in increased bacterial titers in the lungs. In contrast, incubation of Spn carrying a version of PspA lacking the NPB with LDH-A or incubation of wild-type Spn with enzymatically inactive LDH-A did not enhance virulence. Preincubation of NPB-bearing Spn with lactate alone enhanced virulence in a pneumonia model, indicating exogenous lactate production by Spn-bound LDH-A had an important role in pneumococcal pathogenesis. Our observations show that lung LDH, released during the infection, is an important binding target for Spn via PspA/PspC and that pneumococci utilize LDH-A derived lactate for their benefit in vivoIMPORTANCEStreptococcus pneumoniae (Spn) is the leading cause of community-acquired pneumonia. PspA and PspC are among its most important virulence factors, and these surface proteins carry the proline-rich domain (PRD), whose role was unknown until now. Herein, we show that a conserved 22-amino-acid nonproline block (NPB) found within most versions of the PRD binds to host-derived lactate dehydrogenase A (LDH-A), a metabolic enzyme which converts pyruvate to lactate. PspA-mediated binding of LDH-A increased Spn titers in the lungs and this required LDH-A enzymatic activity. Enhanced virulence was also observed when Spn was preincubated with lactate, suggesting LDH-A-derived lactate is a vital food source. Our findings define a role for the NPB of the PRD and show that Spn co-opts host enzymes for its benefit. They advance our understanding of pneumococcal pathogenesis and have key implications on the susceptibility of individuals with preexisting airway damage that results in LDH-A release.


Subject(s)
Bacterial Proteins/metabolism , Heat-Shock Proteins/metabolism , Host-Pathogen Interactions , L-Lactate Dehydrogenase/metabolism , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/pathogenicity , A549 Cells , Animals , Bacterial Proteins/genetics , Female , Heat-Shock Proteins/genetics , Humans , L-Lactate Dehydrogenase/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumococcal Infections/microbiology , Protein Binding , Streptococcus pneumoniae/genetics , THP-1 Cells , Virulence , Virulence Factors
14.
Anal Chim Acta ; 1154: 338328, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33736795

ABSTRACT

We successfully report on the first demonstration of a highly sensitive distance-based liquid crystalline visualization for paper-based analytical devices. The construction of this paper sensor was achieved by immobilizing 4-cyano-4'-pentylbiphenyl (5CB) as liquid crystalline molecules (LCs) onto a paper strip substrate. The sensing mechanism is based on the ultrasound-assisted decomposition of 5CB by the hydroxyl radical (•OH) which is generated from the oxidase enzymatic reaction of the analyte, this then results in the change of texture and color of paper. The utility of our devices was then demonstrated with the determination of bilirubin (BR) in biological samples using a bilirubin oxidase enzymatic reaction. The quantification of BR can be achieved by dipping the tip of the paper strips into the analyte solutions and then by measuring the length of color which has been changed on the paper, by the naked eye. Under optimized conditions, this paper sensor offered the linear range of BR detection from 2.0 to 30.0 pmol/L (R2 = 0.9945) with the limit of detection (LOD) of 0.80 pmol/L. In addition, the results of this sensor were highly reproducible, with a relative standard deviation (RSD) of less than 3.50%. The recoveries of spiked BR in human urine and serum samples were in the range of 99.09-107.89%, which demonstrates the high accuracy of this paper sensor. Overall, this work presents a simple method to determine the concentration of H2O2 and BR at pmol levels with an instrument-free length-measuring readout, so it could be suitable for quantitative analysis of other biomarkers based on oxidase enzymatic reaction, which can provide important information about early disease diagnosis and patient prognosis.


Subject(s)
Hydrogen Peroxide , Liquid Crystals , Humans , Limit of Detection , Paper
15.
Thorac Cancer ; 12(8): 1203-1209, 2021 04.
Article in English | MEDLINE | ID: mdl-33629518

ABSTRACT

BACKGROUND: Preoperative positron emission tomography/computed tomography (PET/CT) is recommended as a guideline for staging of lung cancer. However, for patients with pulmonary ground-glass opacity (GGO) nodules who are supposed to have a relatively low risk of incidence of lymphatic metastasis, it remains uncertain whether PET/CT is more effective than consolidation-to-tumor ratio (CTR) in the prediction of regional lymphatic metastasis. METHODS: The data on patients who underwent surgery for lung cancer from 2011 to 2016 were collected retrospectively, which included CTR, results of PET/CT, and pathological characteristics. The patients who had undergone preoperative PET/CT were identified to find the risk factors for lymphatic metastasis. A receiver operating characteristic (ROC) curve and multiple logistic regression was utilized to clarify the predictive value of CTR and main tumor maximal standardized uptake value (SUVmax). RESULTS: Among 217 patients who had PET/CT before lobectomy, chest computed tomography revealed that 75 patients had CTR greater than 62%. The patients with lymphatic metastasis were shown to have higher CTR and higher main tumor SUVmax. Multiple logistic regression showed that younger age (<60 years), higher main tumor SUVmax on PET/CT, and greater CTR were independent predictive factors for lymphatic metastasis. The area under the ROC curve was comparable, 0.817 for CTR, and 0.816 for main tumor SUVmax. CONCLUSIONS: The present study revealed that CTR was not inferior to main tumor SUVmax considering the predictive power for lymphatic metastasis preoperatively in lung cancer patients with a GGO component. PET/CT might not be necessary preoperatively in selected patients.


Subject(s)
Lung Neoplasms/surgery , Multiple Pulmonary Nodules/surgery , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Multiple Pulmonary Nodules/pathology , Preoperative Period
16.
Methods Mol Biol ; 2261: 25-34, 2021.
Article in English | MEDLINE | ID: mdl-33420982

ABSTRACT

Effective and reliable protease digestion of biological samples is critical to the success in bottom-up proteomics analysis. Various filter-based approaches using different types of membranes have been developed in the past several years and largely implemented in sample preparations for modern proteomics. However, these approaches rely heavily on commercial filter products, which are not only costly but also limited in membrane options. Here, we present a plug-and-play device for filter assembly and protease digestion. The device can accommodate a variety of membrane types, can be packed in-house with minimal difficulty, and is extremely cost-effective and reliable. Our protocol offers a versatile platform for general proteome analyses and clinical mass spectrometry.


Subject(s)
Analytic Sample Preparation Methods/instrumentation , Filtration/instrumentation , Membranes, Artificial , Polyvinyls , Proteins/analysis , Proteomics , Tandem Mass Spectrometry , Proteolysis , Proteome
17.
Circ Res ; 128(5): 570-584, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33501852

ABSTRACT

RATIONALE: Patients with and without cardiovascular diseases have been shown to be at risk of influenza-mediated cardiac complications. Recent clinical reports support the notion of a direct link between laboratory-confirmed influenza virus infections and adverse cardiac events. OBJECTIVE: Define the molecular mechanisms underlying influenza virus-induced cardiac pathogenesis after resolution of pulmonary infection and the role of necroptosis in this process. METHODS AND RESULTS: Hearts from wild-type and necroptosis-deficient (MLKL [mixed lineage kinase domain-like protein]-KO) mice were dissected 12 days after initial influenza A virus (IAV) infection when viral titers were undetectable in the lungs. Immunofluorescence microscopy and plaque assays showed presence of viable IAV particles in the myocardium without generation of interferon responses. Global proteome and phosphoproteome analyses using high-resolution accurate mass-based LC-MS/MS and label-free quantitation showed that the global proteome as well as the phosphoproteome profiles were significantly altered in IAV-infected mouse hearts in a strain-independent manner. Necroptosis-deficient mice had increased survival and reduced weight loss post-IAV infection, as well as increased antioxidant and mitochondrial function, indicating partial protection to IAV infection. These findings were confirmed in vitro by pretreatment of human and rat myocytes with antioxidants or necroptosis inhibitors, which blunted oxidative stress and mitochondrial damage after IAV infection. CONCLUSIONS: This study provides the first evidence that the cardiac proteome and phosphoproteome are significantly altered post-pulmonary influenza infection. Moreover, viral particles can persist in the heart after lung clearance, altering mitochondrial function and promoting cell death without active replication and interferon responses. Finally, our findings show inhibition of necroptosis or prevention of mitochondrial damage as possible therapeutic interventions to reduce cardiac damage during influenza infections. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Orthomyxoviridae Infections/metabolism , Proteome/metabolism , Animals , Cell Line , Heart Diseases/etiology , Heart Diseases/virology , Humans , Influenza A virus/pathogenicity , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/virology , Necroptosis , Orthomyxoviridae Infections/complications , Oxidative Stress , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Kinases/genetics , Proteome/genetics , Rats
18.
J Chin Med Assoc ; 84(2): 171-176, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33177396

ABSTRACT

BACKGROUND: The pandemic of SARS-CoV-2 (COVID-19), which began in December 2019, spread mostly from person to person through respiratory droplets. A recommendation was issued to postpone all elective surgical practices. However, some confirmed or suspected COVID-19 patients required life-saving emergent surgeries. METHODS: To facilitate emergent surgical interventions for these patients, we have reviewed the current literature and established an algorithm of precautions to be taken by operating room team members during the COVID-19 pandemic. RESULTS: The initial algorithm of preparation for surgical intervention during the COVID-19 pandemic was relatively simple. However, the abrupt increase of confirmed COVID-19 cases due to returned overseas travelers since mid-March 2020 disrupted the routine hospital clinical service. Due to the large number of febrile patients, the algorithm was therefore revised according to travel history, occupation, contact and cluster history (TOCC), unexplained fever/symptoms, and emergent/nonemergent surgery. TOCC (+) patients presenting with otherwise unexplained fever/symptoms would be regarded as belonging to the fifth category of "severe special infectious pneumonia." If the patient requires emergent surgery to relieve the non-life-threatening disorders, two times of negative COVID-19 tests are necessary before the operation is approved. For life-threatening situations without two negative results of COVID-19 tests, the operation schedule should be approved by the Chairman of Surgery Management Committee. CONCLUSION: The application of a clear and integrated algorithm for operating room team members aids in effective personal protective equipment facilitation to keep both healthcare providers and patients safe as well as to prevent hospital-based transmission of COVID-19.


Subject(s)
COVID-19/prevention & control , Operating Rooms , SARS-CoV-2 , Algorithms , COVID-19/epidemiology , Humans , Infection Control , Practice Guidelines as Topic , Taiwan/epidemiology , Tertiary Care Centers
19.
Microb Ecol ; 82(4): 1030-1046, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33155101

ABSTRACT

The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , RNA, Ribosomal, 16S/genetics , Squamous Cell Carcinoma of Head and Neck , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...