Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(8): 105035, 2023 08.
Article in English | MEDLINE | ID: mdl-37442234

ABSTRACT

Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme , Cytochrome P-450 CYP1B1 , Pregnenolone , Humans , Brain/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/metabolism , Hydroxycholesterols/metabolism , Mitochondria/metabolism , Neuroglia/metabolism , Pregnenolone/biosynthesis , RNA, Small Interfering/metabolism , Steroids/metabolism
2.
Front Cell Neurosci ; 17: 1210205, 2023.
Article in English | MEDLINE | ID: mdl-37416505

ABSTRACT

Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.

3.
J Biol Chem ; 298(7): 102110, 2022 07.
Article in English | MEDLINE | ID: mdl-35688208

ABSTRACT

Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.


Subject(s)
Neuroglia/metabolism , Neurosteroids , Pregnenolone/metabolism , Aminoglutethimide , Cholesterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Humans , Ketoconazole/pharmacology , Pregnenolone/biosynthesis , Reactive Oxygen Species
4.
Front Neuroendocrinol ; 62: 100925, 2021 07.
Article in English | MEDLINE | ID: mdl-34015388

ABSTRACT

Neurosteroids, steroid hormones synthesized locally in the nervous system, have important neuromodulatory and neuroprotective effects in the central nervous system. Progress in neurosteroid research has led to the successful translation of allopregnanolone into an approved therapy for postpartum depression. However, there is insufficient evidence to support the assumption that steroidogenesis is exactly the same between the nervous system and the periphery. This review focuses on CYP11A1, the only enzyme currently known to catalyze the first reaction in steroidogenesis to produce pregnenolone, the precursor to all other steroids. Although CYP11A1 mRNA has been found in brain of many mammals, the presence of CYP11A1 protein has been difficult to detect, particularly in humans. Here, we highlight the discrepancies in the current evidence for CYP11A1 in the central nervous system and propose new directions for understanding neurosteroidogenesis, which will be crucial for developing neurosteroid-based therapies for the future.


Subject(s)
Central Nervous System , Cholesterol Side-Chain Cleavage Enzyme , Animals , Brain , Female , Humans , Pregnanolone , Pregnenolone
SELECTION OF CITATIONS
SEARCH DETAIL
...