Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 10(1): 40-55, 2022 01.
Article in English | MEDLINE | ID: mdl-34795032

ABSTRACT

Macrophages often abound within tumors, express colony-stimulating factor 1 receptor (CSF1R), and are linked to adverse patient survival. Drugs blocking CSF1R signaling have been used to suppress tumor-promoting macrophage responses; however, their mechanisms of action remain incompletely understood. Here, we assessed the lung tumor immune microenvironment in mice treated with BLZ945, a prototypical small-molecule CSF1R inhibitor, using single-cell RNA sequencing and mechanistic validation approaches. We showed that tumor control was not caused by CSF1R+ cell depletion; instead, CSF1R targeting reshaped the CSF1R+ cell landscape, which unlocked cross-talk between antitumoral CSF1R- cells. These cells included IFNγ-producing natural killer and T cells, and an IL12-producing dendritic cell subset, denoted as DC3, which were all necessary for CSF1R inhibitor-mediated lung tumor control. These data indicate that CSF1R targeting can activate a cardinal cross-talk between cells that are not macrophages and that are essential to mediate the effects of T cell-targeted immunotherapies and promote antitumor immunity.See related Spotlight by Burrello and de Visser, p. 4.


Subject(s)
Dendritic Cells/immunology , Immunotherapy/methods , Interferon-gamma/metabolism , Interleukin-12/metabolism , Lung Neoplasms/therapy , Animals , Benzothiazoles/pharmacology , Cell Line, Tumor , Female , Lung Neoplasms/immunology , Mice , Mice, Inbred C57BL , Picolinic Acids/pharmacology , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Xenograft Model Antitumor Assays
2.
Sci Immunol ; 6(61)2021 07 02.
Article in English | MEDLINE | ID: mdl-34215680

ABSTRACT

Immunotherapy is revolutionizing cancer treatment but is often restricted by toxicities. What distinguishes adverse events from concomitant antitumor reactions is poorly understood. Here, using anti-CD40 treatment in mice as a model of TH1-promoting immunotherapy, we showed that liver macrophages promoted local immune-related adverse events. Mechanistically, tissue-resident Kupffer cells mediated liver toxicity by sensing lymphocyte-derived IFN-γ and subsequently producing IL-12. Conversely, dendritic cells were dispensable for toxicity but drove tumor control. IL-12 and IFN-γ were not toxic themselves but prompted a neutrophil response that determined the severity of tissue damage. We observed activation of similar inflammatory pathways after anti-PD-1 and anti-CTLA-4 immunotherapies in mice and humans. These findings implicated macrophages and neutrophils as mediators and effectors of aberrant inflammation in TH1-promoting immunotherapy, suggesting distinct mechanisms of toxicity and antitumor immunity.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Kupffer Cells/drug effects , Liver/drug effects , Neoplasms/therapy , Neutrophils/drug effects , Animals , CD40 Antigens/antagonists & inhibitors , CD40 Antigens/immunology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cytokines/immunology , Humans , Kupffer Cells/immunology , Liver/immunology , Mice, Transgenic , Neoplasms/immunology , Neutrophils/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology
3.
Cell Rep ; 32(12): 108164, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32966785

ABSTRACT

Myeloid cells co-expressing the markers CD11b, Ly-6G, and SiglecF can be found in large numbers in murine lung adenocarcinomas and accelerate cancer growth by fostering tumor cell invasion, angiogenesis, and immunosuppression; however, some of these cells' fundamental features remain unexplored. Here, we show that tumor-infiltrating CD11b+ Ly-6G+ SiglecFhigh cells are bona fide mature neutrophils and therefore differ from other myeloid cells, including SiglecFhigh eosinophils, SiglecFhigh macrophages, and CD11b+ Ly-6G+ myeloid-derived suppressor cells. We further show that SiglecFhigh neutrophils gradually accumulate in growing tumors, where they can live for several days; this lifespan is in marked contrast to that of their SiglecFlow counterparts and neutrophils in general, which live for several hours only. Together, these findings reveal distinct attributes for tumor-promoting SiglecFhigh neutrophils and help explain their deleterious accumulation in the tumor bed.


Subject(s)
Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Antigens, Ly/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neutrophils/pathology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Lung/pathology , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL