Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786836

ABSTRACT

This study involved direct doping of In2O3 into silicon carbide (SiC) powder, resulting in 8.0 at% In-doped SiC powder. Subsequently, heating at 500 °C was performed to form a target, followed by the utilization of electron beam (e-beam) technology to deposit the In-doped SiC thin films with the thickness of approximately 189.8 nm. The first breakthrough of this research was the successful deposition of using e-beam technology. The second breakthrough involved utilizing various tools to analyze the physical and electrical properties of In-doped SiC thin films. Hall effect measurement was used to measure the resistivity, mobility, and carrier concentration and confirm its n-type semiconductor nature. The uniform dispersion of In ions in SiC was as confirmed by electron microscopy energy-dispersive spectroscopy and secondary ion mass spectrometry analyses. The Tauc Plot method was employed to determine the Eg values of pure SiC and In-doped SiC thin films. Semiconductor parameter analyzer was used to measure the conductivity and the I-V characteristics of devices in In-doped SiC thin films. Furthermore, the third finding demonstrated that In2O3-doped SiC thin films exhibited remarkable current density. X-ray photoelectron spectroscopy and Gaussian-resolved spectra further confirmed a significant relationship between conductivity and oxygen vacancy concentration. Lastly, depositing these In-doped SiC thin films onto p-type silicon substrates etched with buffered oxide etchant resulted in the formation of heterojunction p-n junction. This junction exhibited the rectifying characteristics of a diode, with sample current values in the vicinity of 102 mA, breakdown voltage at approximately -5.23 V, and open-circuit voltage around 1.56 V. This underscores the potential of In-doped SiC thin films for various semiconductor devices.

2.
PLoS One ; 19(5): e0302383, 2024.
Article in English | MEDLINE | ID: mdl-38713724

ABSTRACT

Patients infected with herpes zoster might be at risk for Parkinson's disease (PD). However, antiviral drugs may impede viral deoxyribonucleic acid (DNA) synthesis. This study aimed to determine whether the currently observed association between herpes zoster and PD is consistent with previous findings, and whether antiviral drug use is associated with PD. This retrospective cohort study used the Longitudinal Generation Tracking Database. We included patients aged 40 years and above and applied propensity score matching at 1:1 ratio for study comparability. PD risk was evaluated using Cox proportional hazards regression methods. A total of 234,730 people were analyzed. The adjusted hazard ratio (aHR) for PD in patients with herpes zoster was 1.05. Furthermore, the overall incidence of PD was lower in those treated with antiviral drugs than in the untreated ones (3.17 vs. 3.76 per 1,000 person-years); the aHR was 0.84. After stratifying for sex or age, a similar result was observed. In conclusion, herpes zoster may increase the risk of PD, particularly among females, but receiving antiviral treatment reduces the risk by 16%. Therefore, using antiviral drugs may help prevent PD. However, additional research is required to determine the underlying mechanism(s).


Subject(s)
Antiviral Agents , Herpes Zoster , Parkinson Disease , Humans , Female , Male , Taiwan/epidemiology , Antiviral Agents/therapeutic use , Parkinson Disease/epidemiology , Parkinson Disease/drug therapy , Middle Aged , Aged , Incidence , Herpes Zoster/epidemiology , Herpes Zoster/drug therapy , Retrospective Studies , Adult , Proportional Hazards Models , Aged, 80 and over , Risk Factors
3.
J Phys Chem B ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785765

ABSTRACT

Molecular dynamics simulation is a powerful tool for characterizing the solution structural ensembles of cyclic peptides. However, the ability of simulation to recapitulate experimental results and make accurate predictions largely depends on the force fields used. In our work here, we evaluate the performance of seven state-of-the-art force fields in recapitulating the experimental NMR results in water of 12 benchmark cyclic peptides, consisting of 6 cyclic pentapeptides, 4 cyclic hexapeptides, and 2 cyclic heptapeptides. The results show that RSFF2+TIP3P, RSFF2C+TIP3P, and Amber14SB+TIP3P exhibit similar and the best performance, all recapitulating the NMR-derived structure information on 10 cyclic peptides. Amber19SB+OPC successfully recapitulates the NMR-derived structure information on 8 cyclic peptides. In contrast, OPLS-AA/M+TIP4P, Amber03+TIP3P, and Amber14SBonlysc+GB-neck2 could only recapitulate the NMR-derived structure information on 5 cyclic peptides, the majority of which are not well-structured.

4.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640233

ABSTRACT

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Subject(s)
Influenza, Human , Humans , Viral Core Proteins/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , RNA-Binding Proteins/metabolism , Nucleocapsid Proteins/metabolism , Myxovirus Resistance Proteins
5.
Cell Death Discov ; 10(1): 134, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472168

ABSTRACT

Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.

6.
Cell Mol Life Sci ; 81(1): 61, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279053

ABSTRACT

Previous studies have demonstrated that α-synuclein (α-SYN) is closely associated with rapid eye movement sleep behavior disorder (RBD) related to several neurodegenerative disorders. However, the exact molecular mechanisms are still rarely investigated. In the present study, we found that in the α-SYNA53T induced RBD-like behavior mouse model, the melatonin level in the plasma and pineal gland were significantly decreased. To elucidate the underlying mechanism of α-SYN-induced melatonin reduction, we investigated the effect of α-SYN in melatonin biosynthesis. Our findings showed that α-SYN reduced the level and activity of melatonin synthesis enzyme acetylserotonin O-methyltransferase (ASMT) in the pineal gland and in the cell cultures. In addition, we found that microtubule-associated protein 1 light chain 3 beta (LC3B) as an important autophagy adapter is involved in the degradation of ASMT. Immunoprecipitation assays revealed that α-SYN increases the binding between LC3B and ASMT, leading to ASMT degradation and a consequent reduction in melatonin biosynthesis. Collectively, our results demonstrate the molecular mechanisms of α-SYN in melatonin biosynthesis, indicating that melatonin is an important molecule involved in the α-SYN-associated RBD-like behaviors, which may provide a potential therapeutic target for RBD of Parkinson's disease.


Subject(s)
Melatonin , Pineal Gland , Mice , Animals , Melatonin/metabolism , Acetylserotonin O-Methyltransferase/chemistry , Acetylserotonin O-Methyltransferase/metabolism , alpha-Synuclein/metabolism , Pineal Gland/metabolism
7.
Angew Chem Int Ed Engl ; 63(5): e202317522, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38085688

ABSTRACT

The prevalence of drug-resistant bacterial pathogens foreshadows a healthcare crisis. Calcium-dependent antibiotics (CDAs) are promising candidates to combat infectious diseases as many of them show modes of action (MOA) orthogonal to widespread resistance mechanisms. The calcium dependence is nonetheless one of the hurdles toward realizing their full potential. Using laspartomycin C (LspC) as a model, we explored the possibility of reducing, or even eliminating, its calcium dependence. We report herein a synthetic LspC analogue (B1) whose activity no longer depends on calcium and is instead induced by phenylboronic acid (PBA). In LspC, Asp1 and Asp7 coordinate to calcium to anchor it in the active conformation; these residues are replaced by serine in B1 and condense with PBA to form a boronic ester with the same anchoring effect. Using thin-layer chromatography, MS, NMR, and complementation assays, we demonstrate that B1 inhibits bacterial growth via the same MOA as LspC, i.e., sequestering the cell wall biosynthetic intermediate undecaprenyl phosphate. B1 is as potent and effective as LspC against several Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Our success in converting a CDA to a boron-dependent antibiotic opens a new avenue in the design and functional control of drug molecules.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Calcium , Boron , Bacteria , Microbial Sensitivity Tests
8.
J Dairy Sci ; 107(5): 3114-3126, 2024 May.
Article in English | MEDLINE | ID: mdl-37944808

ABSTRACT

Klebsiella pneumoniae can cause severe clinical mastitis in dairy cows, with K. pneumoniae type K57 (K57-KP) being the most common capsular serotype. To identify virulence factors and antimicrobial-resistance (AMR) genes of K57-KP with varying virulence, Galleria mellonella (greater wax moth) larvae were infected as a screening model to characterize virulence of 90 K57-KP strains, with 10 and 11 strains defined as virulent or attenuated, respectively, based on larval survival rates. Next, virulence of these 21 isolates was subsequently confirmed in adhesion and lactate dehydrogenase release assays, using bovine mammary epithelial cells cultured in vitro. Finally, genes associated with virulence and AMR were characterize with whole-genome sequencing. These 21 K57-KP strains were designated into 16 sequence types based on multi-locus sequence typing and allocated in phylogenetic analysis based on single nucleotide polymorphisms. We found great genetic diversity among isolates. In addition, adhesion-associated genes (e.g., fimA, sfaA, and focA) aminoglycoside-resistance genes (aph(6)-Id, strAB) were associated with virulence. This study provided new knowledge regarding virulence of K57-KP associated with bovine mastitis, which may inform development of novel diagnostic tools and prevention strategies for bovine mastitis.

9.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067432

ABSTRACT

Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.


Subject(s)
Diterpenes , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Phosphatidylinositol 3-Kinases , Cell Proliferation , Cell Line, Tumor , Diterpenes/pharmacology , Apoptosis , Mammals
10.
J Chem Inf Model ; 63(21): 6925-6937, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37917529

ABSTRACT

The Nrf2 transcription factor is a master regulator of the cellular response to oxidative stress, and Keap1 is its primary negative regulator. Activating Nrf2 by inhibiting the Nrf2-Keap1 protein-protein interaction has shown promise for treating cancer and inflammatory diseases. A loop derived from Nrf2 has been shown to inhibit Keap1 selectively, especially when cyclized, but there are no reliable design methods for predicting an optimal macrocyclization strategy. In this work, we employed all-atom, explicit-solvent molecular dynamics simulations with enhanced sampling methods to predict the relative degree of preorganization for a series of peptides cyclized with a set of bis-thioether "staples". We then correlated these predictions to experimentally measured binding affinities for Keap1 and crystal structures of the cyclic peptides bound to Keap1. This work showcases a computational method for designing cyclic peptides by simulating and comparing their entire solution-phase ensembles, providing key insights into designing cyclic peptides as selective inhibitors of protein-protein interactions.


Subject(s)
NF-E2-Related Factor 2 , Peptides, Cyclic , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Protein Binding , NF-E2-Related Factor 2/metabolism , Peptides/chemistry
12.
Am J Cancer Res ; 13(9): 4163-4178, 2023.
Article in English | MEDLINE | ID: mdl-37818056

ABSTRACT

The difficulty of detection at an early stage and the ease of developing resistance to chemotherapy render ovarian cancer (OVC) difficult to cure. Although several novel cancer therapies have been developed recently, drug resistance remains a concern since chemotherapy remains as the most commonly used treatment for cancer patients. Therefore, there is an urgent need to reclaim potential combination treatments for OVC. So far, there have been several research targeting the endocannabinoid system (ECS) in cancer. Among the various cannabinoid-based drugs, endocannabinoids, which are lipid molecules generated in the body, have been reported to produce many anti-tumor effects; however, research investigating the anti-chemoresistance effect of endocannabinoids in OVC remains unclear. In this study, we aimed to combine endocannabinoids, anandamide (AEA), and 2-arachidonoylglycerol (2-AG) with chemotherapeutic drugs as a combination approach to treat OVC. Our results showed that OVC cells expressed both cannabinoid receptors (CBR), CB1 and CB2, suggesting the possibility of endocannabinoid system (ECS) as a target. We found that the anti-chemoresistance effect mediated by endocannabinoids was caused by upregulation of ceramide levels, leading to severe endoplasmic reticulum (ER) stress and increased autophagy in chemoresistant cancer cells. Therefore, chemoresistant cancer cell growth was inhibited, and cell apoptosis was induced under combined treatments. Based on our results, endocannabinoids overcomed chemoresistance of OVC cells in vitro. Our findings suggest that drugs targeting ECS may have the potential to be adjuvants for chemotherapy by increasing the efficacy of chemotherapeutic drugs and decreasing their side effects.

13.
Signal Transduct Target Ther ; 8(1): 334, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37679319

ABSTRACT

Calorie restriction (CR) or a fasting regimen is considered one of the most potent non-pharmacological interventions to prevent chronic metabolic disorders, ameliorate autoimmune diseases, and attenuate aging. Despite efforts, the mechanisms by which CR improves health, particularly brain health, are still not fully understood. Metabolic homeostasis is vital for brain function, and a detailed metabolome atlas of the brain is essential for understanding the networks connecting different brain regions. Herein, we applied gas chromatography-mass spectrometry-based metabolomics and lipidomics, covering 797 structurally annotated metabolites, to investigate the metabolome of seven brain regions in fasted (3, 6, 12, and 24 h) and ad libitum fed mice. Using multivariate and univariate statistical techniques, we generated a metabolome atlas of mouse brain on the global metabolic signature dynamics across multiple brain regions following short-term fasting (STF). Significant metabolic differences across brain regions along with STF-triggered region-dependent metabolic remodeling were identified. We found that STF elicited triacylglycerol degradation and lipolysis to compensate for energy demand under fasting conditions. Besides, changes in amino acid profiles were observed, which may play crucial roles in the regulation of energy metabolism, neurotransmitter signaling, and anti-inflammatory and antioxidant in response to STF. Additionally, this study reported, for the first time, that STF triggers a significant elevation of N-acylethanolamines, a class of neuroprotective lipids, in the brain and liver. These findings provide novel insights into the molecular basis and mechanisms of CR and offer a comprehensive resource for further investigation.


Subject(s)
Intermittent Fasting , Metabolome , Animals , Mice , Fasting , Homeostasis , Brain
14.
Nat Commun ; 14(1): 5654, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704629

ABSTRACT

Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited KD = 4-6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.


Subject(s)
Albumins , Serum Albumin, Human , Humans , Animals , Mice , Apelin , Serum Albumin, Human/genetics , Angiotensin II , Cysteine , Sulfides
15.
Taiwan J Obstet Gynecol ; 62(4): 553-558, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37407193

ABSTRACT

OBJECTIVE: To evaluate the regression rate of endometrial polyps (EPs) in a cohort of asymmetric women after conservative follow-up. MATERIALS AND METHODS: In this retrospective cohort study, a total of 1006 women with asymptomatic EPs were treated with expectant management or hormonal drugs between June 1999 and May 2018. Four hundred forty-eight women (44.5%) were administered with hormonal medications and 558 women were managed expectantly (55.5%). Office hysteroscopy was performed to confirm the diagnosis and regression of EPs. Hormonal administration included oral contraceptives, progestin and cyclic estrogen/progestin regimen according to physicians' preferences. Clinical characteristics, including the patient's age, body mass index, parity, and type of conservative management were collected. RESULTS: The mean observation time was 14.1 ± 18.5 months (range, 1-162 months). The overall regression rate of EPs in this cohort was 33.5%, 24.6% occurred after medication and 8.9% after expectant management. Patient age (<50 years) (p < 0.001), follow-up period (p = 0.005) and hormonal drugs used (p < 0.001) were significantly associated with EP regression. Twenty-four (7.1%) of the 337 EP regression patients later developed recurrent disease. Follow-up period (p < 0.001) and hormonal drugs used (p = 0.032) were closely related to polyp recurrence after initial regression. Nevertheless, multivariate logistic regression analysis revealed that hormonal drugs used was significantly associated with the regression (p < 0.001) and recurrence (p = 0.016) of EPs. CONCLUSION: Women aged 50 or less are more suitable for conservative treatment for EPs. Hormonal drugs used could increase the incidence of EP regression.


Subject(s)
Endometrial Neoplasms , Polyps , Uterine Neoplasms , Pregnancy , Humans , Female , Conservative Treatment , Progestins/therapeutic use , Retrospective Studies , Uterine Neoplasms/complications , Hysteroscopy , Polyps/therapy , Polyps/diagnosis , Endometrial Neoplasms/diagnosis
16.
Int J Legal Med ; 137(5): 1527-1533, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493764

ABSTRACT

Radiology plays a crucial role in forensic anthropology for age estimation. However, most studies rely on morphological methods. This study aims to investigate the feasibility of using pubic bone mineral density (BMD) as a new age estimation method in the Chinese population. 468 pubic bone CT scans from living individuals in a Chinese hospital aged 18 to 87 years old were used to measure pubic BMD. The BMD of the bilateral pubic bone was measured using the Mimics software on cross-sectional CT images and the mean BMD of the bilateral pubic bone was also calculated. Regression analysis was performed to assess the correlation between pubic BMD and chronological age and to develop mathematical models for age estimation. We evaluated the accuracy of the best regression model using an independent validation sample by calculating the mean absolute error (MAE). Among all established models, the cubic regression model had the highest R2 value in both genders, with R2 = 0.550 for males and R2 = 0.634 for females. The results of the best model test showed that the MAE for predicting age using pubic BMD was 8.66 years in males and 7.69 years in females. This study highlights the potential of pubic BMD as a useful objective indicator for adult age estimation and could be used as an alternative in forensic practice when other better indicators are lacking.

17.
PLoS One ; 18(7): e0288426, 2023.
Article in English | MEDLINE | ID: mdl-37428817

ABSTRACT

The cause of trigger fingers remains uncertain. High lipid levels in the blood may reduce blood supply to the distal fingers and promote inflammation. We aimed to explore the association between hyperlipidemia and trigger finger. A nationwide population-based cohort study using longitudinal data from 2000 to 2013, 41,421 patients were included in the hyperlipidemia cohort and 82,842 age- and sex-matched patients were included in the control cohort. The mean age was 49.90 ± 14.73 years in the hyperlipidemia cohort and 49.79 ± 14.71 years in the control cohort. After adjusting for possible comorbidities, the hazard ratio of trigger finger in the hyperlipidemia cohort was 4.03 (95% confidence interval [CI], 3.57-4.55), with values of 4.59 (95% CI, 3.67-5.73) and 3.77 (95% CI, 3.26-4.36) among male and female patients, respectively. This large-scale population-based study demonstrated that hyperlipidemia is correlated to trigger finger.


Subject(s)
Hyperlipidemias , Trigger Finger Disorder , Humans , Male , Female , Adult , Middle Aged , Hyperlipidemias/complications , Hyperlipidemias/epidemiology , Cohort Studies , Comorbidity , Inflammation , Taiwan , Retrospective Studies , Risk Factors , Incidence
18.
Materials (Basel) ; 16(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37374459

ABSTRACT

In the context of ZnO nanorods (NRs) grown on Si and indium tin oxide (ITO) substrates, this study aimed to compare their degradation effect on methylene blue (MB) at different concentrations. The synthesis process was carried out at a temperature of 100 °C for 3 h. After the synthesis of ZnO NRs, their crystallization was analyzed using X-ray diffraction (XRD) patterns. The XRD patterns and top-view SEM observations demonstrate variations in synthesized ZnO NRs when different substrates were used. Furthermore, cross-sectional observations reveal that ZnO NRs synthesized on an ITO substrate exhibited a slower growth rate compared to those synthesized on a Si substrate. The as-grown ZnO NRs synthesized on the Si and ITO substrates exhibited average diameters of 110 ± 40 nm and 120 ± 32 nm and average lengths of 1210 ± 55 nm and 960 ± 58 nm, respectively. The reasons behind this discrepancy are investigated and discussed. Finally, synthesized ZnO NRs on both substrates were utilized to assess their degradation effect on methylene blue (MB). Photoluminescence spectra and X-ray photoelectron spectroscopy were employed to analyze the quantities of various defects of synthesized ZnO NRs. The effect of MB degradation after 325 nm UV irradiation for different durations can be evaluated using the Beer-Lambert law, specifically by analyzing the 665 nm peak in the transmittance spectrum of MB solutions with different concentrations. Our findings reveal that ZnO NRs synthesized on an ITO substrate exhibited a higher degradation effect on MB, with a rate of 59.5%, compared to NRs synthesized on a Si substrate, which had a rate of 73.7%. The reasons behind this outcome, elucidating the factors contributing to the enhanced degradation effect are discussed and proposed.

19.
Soft comput ; : 1-13, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37362268

ABSTRACT

The usage of social media is increasing by leaps and bounds in our day-to-day lives. It affects daily routines and brings a lot of change in different departments like health and education systems during the COVID-19 pandemic. Healthcare research and practice have been significantly impacted by the astounding growth of social media. Social media are changing health information management in several ways, from offering appropriate ways to enhance healthcare professional contact and share health-related knowledge and experience to facilitating the development of innovative medical research and wisdom. Social media analytics (SMAs) are efficient and effective interaction instruments that can be useful for both patients and clinicians in health interventions. Moreover, a significant portion of those involved in clinical practices (such as clinicians, professional colleges, and departments of health) are unaware of the importance of social media, its potential applications in their daily lives, as well as the possible consequences and how these will be handled. In the presented study, we proposed MCDM-based approaches known as "Criteria Importance Through Inter Correlation" (CRITIC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) in order to identify the effective alternative among several options and make a better decision. After extracting features from the literature review, we choose six significant and relevant features and assign weights to them using CRITIC techniques while utilizing the TOPSIS technique to rank the alternatives based on their performance values. After the implementation of both methods and evaluation procedure, it is determined that the alternative with the highest score is placed at the top and called the "best alternative," while the alternative with the lowest score is placed at the bottom and called the worst alternative. Finally, we suggest a variety of research initiatives and new research areas where the aforementioned procedures become extremely useful in evaluating SMAs and their uses in online health interventions.

20.
Microbiol Spectr ; 11(3): e0299522, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37154706

ABSTRACT

Lactococcus garvieae is an emerging zoonotic pathogen, but there are few reports regarding bovine mastitis. The prevalence of L. garvieae represents an increasing disease threat and global public health risk. Thirty-nine L. garvieae isolates were obtained from 2,899 bovine clinical mastitis milk samples in 6 provinces of China from 2017 to 2021. Five clonal complexes were determined from 32 multilocus sequence types (MLSTs) of L. garvieae: sequence type 46 (ST46) was the predominant sequence type, and 13 novel MLSTs were identified. All isolates were resistant to chloramphenicol and clindamycin, but susceptible to penicillin, ampicillin, amoxicillin-clavulanic acid, imipenem, ceftiofur, enrofloxacin, and marbofloxacin. Based on genomic analyses, L. garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase. Most isolates had lsaD and mdtA antimicrobial resistance (AMR) genes. Based on COG (Clusters of Orthologous Genes database) results, the functions of defense, transcription and replication, and recombination and repair were enhanced in unique genes, whereas functions of translation, ribosomal structure, and biogenesis were enhanced in core genes. The KEGG functional categories enriched in unique genes included human disease and membrane transport, whereas COG functional categories enriched in core genes included energy metabolism, nucleotide metabolism, and translation. No gene was significantly associated with host specificity. In addition, analysis of core genome single nucleotide polymorphisms (SNPs) implied potential host adaptation of some isolates in several sequence types. In conclusion, this study characterized L. garvieae isolated from mastitis and detected potential adaptations of L. garvieae to various hosts. IMPORTANCE This study provides important genomic insights into a bovine mastitis pathogen, Lactococcus garvieae. Comprehensive genomic analyses of L. garvieae from dairy farms have not been reported. This study is a detailed and comprehensive report of novel features of isolates of L. garvieae, an important but poorly characterized bacterium, recovered in the past 5 years in 6 Chinese provinces. We documented diverse genetic features, including predominant sequence type ST46 and 13 novel MLSTs. Lactococcus garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase and resistance to chloramphenicol and clindamycin. Most isolates had lsaD and mdtA antimicrobial resistance genes. However, no gene was significantly associated with host specificity. This is the first report that characterized L. garvieae isolates from bovine mastitis and revealed potential host adaptations of L. garvieae to various hosts.


Subject(s)
Anti-Infective Agents , Mastitis, Bovine , Female , Animals , Cattle , Humans , Fibronectins , Clindamycin , Mastitis, Bovine/epidemiology , Mastitis, Bovine/microbiology , Chloramphenicol , Genomics , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...