Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
MedComm (2020) ; 5(4): e524, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585232

ABSTRACT

Enteric IL-17RA deficiency leads to gut dysbiosis, consequently initiating the proliferation of tumors at remote locations. The deficiency or blockade of enteric IL-17RA induces the secretion of IL-17A by B cells and Th17 cells in response to microbial signals, resulting in a systemic elevation of IL-17A and fostering the growth of remote tumors. This figure was created with BioRender.com.

2.
Phytochemistry ; 221: 114038, 2024 May.
Article in English | MEDLINE | ID: mdl-38395211

ABSTRACT

Cephalotanes are a rare class of diterpenoids occurring exclusively in Cephalotaxus plants. The intriguing structures and promising biological activities for this unique compound class prompt us to investigate C. fortunei var. alpina and C. sinensis, leading to the isolation of six undescribed cephalotane-type diterpenoids and/or norditerpenoids, ceforloids A-F (1-6). Their structures were elucidated by comprehensive analysis of spectroscopic data, including ECD and single-crystal X-ray diffraction studies, as well as quantum chemical calculations. Compound 1 possesses an unprecedented norditerpenoid skeleton featuring an unusual acetophenone moiety, and originated putatively from a disparate biogenetic pathway. Compounds 4 and 5 incorporate a unique 12,13-p-hydroxybenzylidene acetal motif. Compound 6 is a rare cephalotane-type diterpenoid glycoside. Immunosuppressive assays showed that compounds 2 and 6 exhibited mild suppressive activity against the activated T and B lymphocytes proliferation. These findings not only expanded the structural diversity of this small group of diterpenoids, but also explored their potential as novel structures for the development of immunosuppressive agents.


Subject(s)
Cephalotaxus , Diterpenes , Molecular Structure , Cephalotaxus/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Immunosuppressive Agents , Crystallography, X-Ray
3.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37605050

ABSTRACT

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Subject(s)
Corneal Neovascularization , Dry Eye Syndromes , Rats , Humans , Mice , Animals , Female , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rodentia/metabolism , Endothelial Cells/metabolism , Angiogenesis , Inflammation/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/chemically induced , STAT3 Transcription Factor/metabolism
4.
Biomed Pharmacother ; 170: 115975, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070246

ABSTRACT

Osteoarthritis (OA) is characterized by gradual articular cartilage degradation, accompanied by persistent low-grade joint inflammation, correlating with radiographic and pain-related progression. The latent therapeutic potential of DZ2002, a reversible inhibitor of S-adenosyl-L-homocysteine hydrolase (SAHH), holds promise for OA intervention. This study endeavored to examine the therapeutic efficacy of DZ2002 within the milieu of OA. The cytotoxicity of DZ2002 was evaluated using the MTT assay on bone marrow-derived macrophages. The inhibitory impact of DZ2002 during the process of osteoclastogenesis was assessed using TRAP staining, analysis of bone resorption pits, and F-actin ring formation. Mechanistic insights were derived from qPCR and Western blot analyses. Through the intra-articular injection of monosodium iodoacetate (MIA), an experimental rat model of OA was successfully instituted. This was subsequently accompanied by a series of assessments including Von Frey filament testing, analysis of weight-bearing behaviors, and micro-CT imaging, all aimed at assessing the effectiveness of DZ2002. The findings emphasized the effectiveness of DZ2002 in mitigating osteoclastogenesis induced by M-CSF/RANKL, evident through a reduction in TRAP-positive OCs and bone resorption. Moreover, DZ2002 modulated bone resorption-associated gene and protein expression (CTSK, CTR, Integrin ß3) via the MEK/ERK pathway. Encouragingly, DZ2002 also alleviates MIA-induced pain, cartilage degradation, and bone loss. In conclusion, DZ2002 emerges as a potential therapeutic contender for OA, as evidenced by its capacity to hinder in vitro M-CSF/RANKL-induced osteoclastogenesis and mitigate in vivo osteoarthritis progression. This newfound perspective provides substantial support for considering DZ2002 as a compelling agent for osteoarthritis intervention.


Subject(s)
Bone Resorption , Cartilage, Articular , Osteoarthritis , Rats , Animals , Iodoacetic Acid/adverse effects , Iodoacetic Acid/metabolism , Macrophage Colony-Stimulating Factor/metabolism , MAP Kinase Signaling System , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Pain/drug therapy , Cartilage, Articular/metabolism , Bone Resorption/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Disease Models, Animal
5.
Innovation (Camb) ; 4(6): 100524, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38028132
7.
Acta Pharmacol Sin ; 42(11): 1742-1756, 2021 11.
Article in English | MEDLINE | ID: mdl-33589796

ABSTRACT

Autoimmune diseases are chronic immune diseases characterized by dysregulation of immune system, which ultimately results in a disruption in self-antigen tolerance. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) play essential roles in various autoimmune diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, multiple sclerosis (MS), etc. NLR proteins, consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-binding domain, and an N-terminal effector domain, form a group of pattern recognition receptors (PRRs) that mediate the immune response by specifically recognizing cellular pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and triggering numerous signaling pathways, including RIP2 kinase, caspase-1, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and so on. Based on their N-terminal domain, NLRs are divided into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. In this review, we briefly describe the structures and signaling pathways of NLRs, summarize the recent progress on NLR signaling in the occurrence and development of autoimmune diseases, as well as highlight numerous natural products and synthetic compounds targeting NLRs for the treatment of autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , NLR Proteins/antagonists & inhibitors , NLR Proteins/metabolism , Animals , Autoimmune Diseases/immunology , Furans/administration & dosage , Furans/immunology , Furans/metabolism , Humans , Indenes/administration & dosage , Indenes/immunology , Indenes/metabolism , NLR Proteins/immunology , Pyridines/administration & dosage , Pyridines/immunology , Pyridines/metabolism , Sulfonamides/administration & dosage , Sulfonamides/immunology , Sulfonamides/metabolism
8.
Acta Pharmacol Sin ; 42(10): 1653-1664, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33441995

ABSTRACT

Rheumatoid arthritis (RA) is characterized by joint leukocyte infiltration, synovial inflammation and bone damage result from osteoclastogenesis. Bruton's tyrosine kinase (BTK) is a key regulator of B cell receptor (BCR) and Fc gamma receptor (FcγR) signaling involved in the pathobiology of RA and other autoimmune disorders. SOMCL-17-016 is a potent and selective tricyclic BTK inhibitor, structurally distinct from other known BTK inhibitors. In present study we investigated the therapeutic efficacy of SOMCL-17-016 in a mouse collagen-induced arthritis (CIA) model and underlying mechanisms. CIA mice were administered SOMCL-17-016 (6.25, 12.5, 25 mg·kg-1·d-1, ig), or ibrutinib (25 mg·kg-1·d-1, ig) or acalabrutinib (25 mg·kg-1·d-1, ig) for 15 days. We showed that oral administration of SOMCL-17-016 dose-dependently ameliorated arthritis severity and bone damage in CIA mice; it displayed a higher in vivo efficacy than ibrutinib and acalabrutinib at the corresponding dosage. We found that SOMCL-17-016 administration dose-dependently inhibited anti-IgM-induced proliferation and activation of B cells from CIA mice, and significantly decreased anti-IgM/anti-CD40-stimulated RANKL expression in memory B cells from RA patients. In RANKL/M-CSF-stimulated RAW264.7 cells, SOMCL-17-016 prevented osteoclast differentiation and abolished RANK-BTK-PLCγ2-NFATc1 signaling. In summary, this study demonstrates that SOMCL-17-016 presents distinguished therapeutic effects in the CIA model. SOMCL-17-016 exerts a dual inhibition of B cell function and osteoclastogenesis, suggesting that it to be a promising drug candidate for RA treatment.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Heterocyclic Compounds, 3-Ring/therapeutic use , Memory B Cells/drug effects , Protein Kinase Inhibitors/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Autoantibodies/metabolism , Inflammation/drug therapy , Lymphocyte Activation/drug effects , Macrophages/drug effects , Male , Mice, Inbred DBA , Osteoclasts/drug effects , Osteogenesis/drug effects , Pyrimidines/therapeutic use , Pyrrolizidine Alkaloids/therapeutic use , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction/drug effects
9.
Acta Pharmacol Sin ; 42(4): 593-603, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32747720

ABSTRACT

Dry eye disease (DED) is a multifactorial disorder of the tears and ocular surface characterized by manifestations of dryness and irritation. Although the pathogenesis is not fully illuminated, it is recognized that inflammation has a prominent role in the development and deterioration of DED. ß-aminoarteether maleate (SM934) is a water-soluble artemisinin derivative with anti-inflammatory and immunosuppressive activities. In this study, we established scopolamine hydrobromide (SCOP)-induced rodent model as well as benzalkonium chloride (BAC)-induced rat model to investigate the therapeutic potential of SM934 for DED. We showed that topical application of SM934 (0.1%, 0.5%) significantly increased tear secretion, maintained the number of conjunctival goblet cells, reduced corneal damage, and decreased the levels of inflammatory mediators (TNF-α, IL-6, IL-10, or IL-1ß) in conjunctiva in SCOP-induced and BAC-induced DED models. Moreover, SM934 treatment reduced the accumulation of TLR4-expressing macrophages in conjunctiva, and suppressed the expression of inflammasome components, i.e., myeloid differentiation factor88 (MyD88), Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), and cleaved caspase 1. In LPS-treated RAW 264.7 cells, we demonstrated that pretreatment with SM934 (10 µM) impeded the upregulation of TLR4 and downstream NF-κB/NLRP3 signaling proteins. Collectively, artemisinin analog SM934 exerts therapeutic benefits on DED by simultaneously reserving the structural integrity of ocular surface and preventing the corneal and conjunctival inflammation, suggested a further application of SM934 in ophthalmic therapy, especially for DED.


Subject(s)
Artemisinins/therapeutic use , Dry Eye Syndromes/drug therapy , Signal Transduction/drug effects , Animals , Conjunctiva/pathology , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/pathology , Female , Goblet Cells/drug effects , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NF-kappa B p50 Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RAW 264.7 Cells , Rats, Sprague-Dawley , Scopolamine , Tears/drug effects , Toll-Like Receptor 4/metabolism
10.
J Ethnopharmacol ; 265: 113345, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32890713

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Periploca sepium Bunge (P. sepium) is used in traditional Chinese medicine (TCM) for the treatment of autoimmune diseases, particularly rheumatoid arthritis. Periploca sepium periplosides (PePs), isolated from the root bark of P. sepium, characterized as the cardiac glycosides-free pregnane glycosides fraction, is expected to possess therapeutic potential on inflammatory arthritis. AIM OF THE STUDY: The current study is designed to evaluate the anti-nociceptive, anti-inflammatory and anti-arthritic activities effects of the PePs. MATERIALS AND METHODS: The anti-nociceptive activity of PePs was examined in the writhing test and hot-plate test in mice. The anti-inflammatory activity of PePs was determined by the 2, 4-dinitro-1-fluorobenzene (DNFB)-induced ear edema model and the carrageenan induced paw edema model in mice. The anti-arthritic activity of PePs was investigated by evaluating the joint inflammation and arthritis pathology in rat adjuvant induced arthritis (AIA) and murine collagen induced arthritis (CIA). Phytohaemagglutinin M (PHA-M) -elicited human peripheral blood mononuclear cells (PBMCs) were further applied to assess the suppressive activity of PePs on IFN-γ and IL-17 production. RESULTS: PePs treatment markedly decreased the acetic acid-induced visceral nociceptive response and increased the hot-plate pain threshold. Further, oral administration of PePs exhibited anti-inflammatory activity by decreasing DNFB-induced ear edema in mice and carrageenan-induced paw edema in rats. Moreover, oral treatment of PePs ameliorated joint swelling and attenuated bone erosion in rodent arthritis, and the therapeutic benefits were partially attributed to the suppression of proinflammatory cytokines such IFN-γ and IL-17. Moreover, PePs suppressed the proliferation as well as IFN-γ and IL-17 secretion in PHA-M-elicited human PBMCs in a concentration dependent manner. CONCLUSIONS: Taken together, our results justified the traditional use of Periploca sepium Bunge for the treatment of diseases associated with inflammation and pain.


Subject(s)
Analgesics/pharmacology , Antirheumatic Agents/pharmacology , Glycosides/pharmacology , Periploca/chemistry , Pregnanes/pharmacology , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antirheumatic Agents/isolation & purification , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Disease Models, Animal , Edema/drug therapy , Female , Glycosides/isolation & purification , Inflammation/drug therapy , Inflammation/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Inbred ICR , Pain/drug therapy , Pregnanes/isolation & purification , Rats , Rats, Sprague-Dawley
11.
Lupus Sci Med ; 6(1): e000331, 2019.
Article in English | MEDLINE | ID: mdl-31168402

ABSTRACT

OBJECTIVE: Rheumatoid arthritis is an autoimmune disease characterised by inflammation and bone loss, leading to joint destruction and deformity. The cervus and cucumis polypeptide (CCP) injection, one of the traditional Chinese medicine injections combined extracts from deer horn and sweet melon seeds, is widely used to treat arthritis and bone fracture in China. The present study investigated the therapeutic efficacy and mechanism of CCP on pathological immune cells and bone homoeostasis in rodent experimental arthritis. METHODS: The effects of CCP (4 mg/kg and 2 mg/kg) on clinical arthritis symptoms, bone erosion, proinflammatory cytokines and pathological immune cells induced by complete Freund's adjuvant was evaluated in male Sprague-Dawley rats. The impacts of CCP (2 mg/kg) on joint erythema and swelling, production of pathogenic antibodies and the proportion of inflammatory cells were assessed in collagen-induced arthritis (CIA) in DBA/1J mice. Regulation of osteoclastogenesis by CCP was observed in the murine macrophage-like RAW264.7 cells treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). RESULTS: CCP administration significantly prevented disease progression in both adjuvant-induced arthritis (AIA) rats and CIA mice. The therapeutic benefits were accompanied by reduction of paw oedema, reversed bone destruction, decreased pathological changes and osteoclast numbers in joints in AIA rats, as well as attenuated clinical manifestation and autoantibodies production in CIA mice. Meanwhile, in vitro supplemented of CCP concentration dependently inhibited RANKL/M-CSF-induced osteoclast differentiation, without showing cytotoxicity in RAW264.7 cells. Further, the presence of CCP dampened the augmented downstream signalling transduction as well as activation of osteoclast-specific genes and transcription factors induced by RANKL/M-CSF in RAW264.7 cells. CONCLUSION: Our study suggested that the therapeutic effects of CCP in experimental arthritis could be attributed to its intervention on RANKL-induced osteoclastogenesis signalling pathway in osteoclast precursor cells.

12.
Life Sci ; 218: 205-212, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30580021

ABSTRACT

BACKGROUND: Heme oxygenase-1 (HO-1), a cellular stress protein, serves a vital metabolic function as the rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin (BR). HO-1 may function as one of the most momentous factors of cell adaptation to oxidase stress, as well as a regulator of inflammatory signaling programs through the generation of its biologically active end products. Intensive investigation is now focusing on the potential function of HO-1 in inflammatory disorders, among which rheumatic diseases are one of the principal issues. METHODS: "Heme oxygenase-1", "rheumatic diseases"; "lupus", "rheumatic arthritis", "osteoarthritis" and "oxidative stress" were used as key words for searching in Pubmed and Google scholar database. RESULTS: Collected information from the related articles revealed the important role of pathogenesis and therapeutic potential of HO-1 in rheumatic diseases. Conclusions and discussions HO-1 has potential as a target for the treatment of rheumatic diseases due to its characteristic anti-inflammatory and anti-oxidative role. However, it is essential to monitor the HO-1 expression during particular stage of the disorders, and levels of HO-1 in different tissues and organs should be further confirmed in order to correlate it with clinical symptoms and other hallmarks of rheumatic diseases.


Subject(s)
Antirheumatic Agents/therapeutic use , Heme Oxygenase-1/antagonists & inhibitors , Rheumatic Diseases/drug therapy , Animals , Humans , Rheumatic Diseases/metabolism
13.
Bioorg Med Chem Lett ; 28(3): 330-333, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29292227

ABSTRACT

Phytochemical investigation of the root barks of Periploca chrysantha D. S. Yao, X. C. Chen et J. W. Ren (Asclepiadaceae) led to the elucidation of four new spiroorthoester group-containing pregnane glycosides (1-4), named periplosides W-Y and 3-O-formyl-periploside F. Their structures were elucidated on the basis of extensive spectroscopic analysis. The four new pregnane glycosides (1-4) were found to exhibit significantly inhibitory activities against the proliferation of B and T lymphocytes and favorable selective index comparable to those of cyclosporin A.


Subject(s)
B-Lymphocytes/drug effects , Glycosides/pharmacology , Periploca/chemistry , Plant Bark/chemistry , Plant Roots/chemistry , Pregnanes/pharmacology , Spiro Compounds/pharmacology , T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glycosides/chemistry , Humans , Molecular Conformation , Pregnanes/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
14.
Acta Pharmacol Sin ; 39(1): 107-116, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28880016

ABSTRACT

(5R)-5-hydroxytriptolide (LLDT-8) is a novel triptolide analog that has been identified as a promising candidate for treating autoimmune diseases and has been shown to be effective in treating murine collagen-induced arthritis and lupus nephritis. In the present study, we investigated the therapeutic effect and possible mechanism of action of LLDT-8 in a murine anti-glomerular basement membrane (GBM) glomerulonephritis model. NZW mice were injected with rabbit anti-GBM serum (500 µL, ip). The mice were orally treated with LLDT-8 (0.125 mg/kg, every other day) or a positive control prednisolone (2 mg/kg every day) for 14 d. Blood and urine samples as well as spleen and kidney tissues were collected for analyses. LLDT-8 treatment did not affect the generation of mouse anti-rabbit antibodies. LLDT-8 significantly reversed established proteinuria, improved renal histopathology and attenuated renal dysfunction in glomerulonephritis mice. Furthermore, LLDT-8 inhibited inflammation in the kidney evidenced by significantly decreasing C3 and IgG deposition, reducing the levels of the pathogenic cytokines TNF-α, IL-6, IL-17, and IFN-γ, and reducing related chemokine expression and leukocyte infiltration in kidneys. Moreover, LLDT-8 treatment significantly increased the expression of FcγRIIB in the kidney and spleen. In addition, the treatment restored the reduced expression of FcγRIIB on the surface of kidney effector cells, CD11b+ cells, and interfered with FcγR-dependent signaling, especially FcγRIIB-mediated downstream kinases, such as BTK. These results demonstrate that LLDT-8 ameliorates anti-GBM glomerulonephritis by regulating the Fcγ receptor signaling.


Subject(s)
Anti-Glomerular Basement Membrane Disease/drug therapy , Diterpenes/therapeutic use , Immunosuppressive Agents/therapeutic use , Receptors, IgG/metabolism , Animals , Complement C3/metabolism , Diterpenes/administration & dosage , Diterpenes/chemistry , Immunoglobulin G/metabolism , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Inflammation/drug therapy , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Kidney/pathology , Leukocytes/drug effects , Male , Mice, Inbred Strains , Receptors, IgG/genetics , Signal Transduction/drug effects , Stereoisomerism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
15.
Fitoterapia ; 124: 193-199, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29154862

ABSTRACT

Phytochemical investigation of the roots of Cynanchum bungei Decne (Asclepiadaceae) led to the elucidation of seven C21-steroidal glycosides (1-7) including three new compounds (1-3), named cynabungosides A-C, one new eudesmane-type sesquiterpene (8), named cynabungone, and one new humulane-type sesquiterpene (9), named cynabungolide. Their structures were elucidated on the basis of extensive spectroscopic analysis. The absolute configurations of 8 and 9 were defined unequivocally by ECD analysis and X-ray crystallography, respectively. A putative biosynthetic pathway of humulane-type sesquiterpenes 9 and 10 is proposed.


Subject(s)
B-Lymphocytes/drug effects , Cynanchum/chemistry , Glycosides/pharmacology , Sesquiterpenes/pharmacology , T-Lymphocytes/drug effects , Animals , Glycosides/chemistry , Molecular Structure , Plant Roots/chemistry , Sesquiterpenes/chemistry
16.
Pharmacol Res ; 129: 443-452, 2018 03.
Article in English | MEDLINE | ID: mdl-29155016

ABSTRACT

DZ2002, a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor with immunosuppressive properties and potent therapeutic activity against various autoimmune diseases in mice. The present study was designed to characterize the potential therapeutic effects of DZ2002 on murine model of psoriasis and reveal the correlated mechanisms. In this report, we demonstrated that in vitro, DZ2002 significantly decreased the expression of pro-inflammatory cytokines and adhesion molecule including IL-1α, IL-1ß, IL-6, IL-8, TNF-α and ICAM-1 by inhibiting the phosphorylation of p38 MAPK, ERK and JNK in TNF-α/IFN-γ-stimulated HaCaT human keratinocytes. Topical administration of DZ2002 alleviated the imiquimod (IMQ)-induced psoriasis-like skin lesions and inflammation in mice, the therapeutic effect was comparable with the Calcipotriol. Moreover, the inflammatory skin disorder was restored by DZ2002 treatment characterized by reducing both of the CD3+ T cell accumulation and the psoriasis-specific cytokines expression. Further, we found that DZ2002 improved IMQ-induced splenomegaly and decreased the frequency of splenic IL-17-producing T cells. Our finding offered the convincing evidence that SAHH inhibitor DZ2002 might attenuate psoriasis by simultaneously interfering the abnormal activation and differentiation of keratinocytes and accumulation of IL-17-producing T cells in skin lesions.


Subject(s)
Adenine/analogs & derivatives , Adenosylhomocysteinase/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Butyrates/pharmacology , Keratinocytes/drug effects , Psoriasis/immunology , T-Lymphocytes/drug effects , Adenine/pharmacology , Adenine/therapeutic use , Administration, Topical , Animals , Anti-Inflammatory Agents/therapeutic use , Butyrates/therapeutic use , Cells, Cultured , Cytokines/immunology , Female , Humans , Imiquimod , Keratinocytes/immunology , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , T-Lymphocytes/immunology
17.
Sci Rep ; 6: 38115, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27897259

ABSTRACT

SM934 is an artemisinin analogue with immunosuppressive properties and potent therapeutic activity against lupus-like diseases in autoimmune mice. In this report, the therapeutic efficacy and underlying mechanisms of SM934 on rheumatoid arthritis (RA) was investigated using collagen-induced arthritis (CIA) in DBA/1J mice. We demonstrated that SM934 treatment alleviate the severity of arthritis in CIA mice with established manifestations. The therapeutic benefits were associated with ameliorated joint swelling and reduced extent of bone erosion and destruction. Further, administration of SM934 diminished the development of T follicular helper (Tfh) cells and Th17 cells and suppressed the production of pathogenic antibodies, without altering the proportion of germinal center B cells. Ex vivo, SM934 treatment inhibited the bovine type II collagen (CII) induced proliferation and inflammatory cytokines secretion of CII -reactive T cells. In vitro, SM934 impeded the polarization of naïve CD4+ T cells into Tfh cells and the expression of its transcript factor Bcl-6. Moreover, SM934 decreased the IL-21-producing CD4+ T cells and dampened the IL-21 downstream signaling through STAT3. These finding offered the convincing evidence that artemisinin derivative might attenuate RA by simultaneously interfering with the generation of Tfh cells and Th17 cells as well as the subsequent antibody-mediated immune responses.


Subject(s)
Artemisinins/pharmacology , Arthritis, Experimental/economics , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Collagen Type II/pharmacology , Th17 Cells/drug effects , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cattle , Disease Models, Animal , Female , Interferon-gamma/metabolism , Interleukins/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Proto-Oncogene Proteins c-bcl-6/metabolism , STAT3 Transcription Factor/metabolism , Th17 Cells/metabolism
18.
Acta Pharmacol Sin ; 35(2): 219-29, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24374810

ABSTRACT

AIM: To examine the therapeutic effects and underlying mechanisms of DZ2002, a reversible S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, on lupus-prone female NZB×NZW F1 (NZB/W F1) mice. METHODS: Female NZB/W F1 mice were treated orally with DZ2002 (0.5 mg·kg(-1)·d(-1)) for 11 weeks, and the proteinuria level and body weight were monitored. After the mice ware euthanized, serum biochemical parameters and renal damage were determined. Splenocytes of NZB/W F1 mice were isolated for ex vivo study. Toll-like receptor (TLR)-stimulated human peripheral blood mononuclear cells (PBMCs) or murine bone marrow-derived dendritic cells (BMDCs) were used for in vitro study. RESULTS: Treatment of the mice with DZ2002 significantly attenuated the progression of glomerulonephritis and improved the overall health. The improvement was accompanied by decreased levels of nephritogenic anti-dsDNA IgG2a and IgG3 antibodies, serum IL-17, IL-23p19 and TGF-ß. In ex vivo studies, treatment of the mice with DZ2002 suppressed the development of pathogenic Th17 cells, significantly decreased IL-17, TGF-ß, IL-6, and IL-23p19 production and impeded activation of the STAT3 protein and JNK/NF-κB signaling in splenocytes. DZ2002 (500 µmol/L) significantly suppressed TLR agonists-stimulated up-regulation in IL-6, IL-12p40, TNF-α, and IgG and IgM secretion as well as in HLA-DR and CD40 expression of dendritic cells among human PBMCs in vitro. DZ2002 (100 µmol/L) also significantly suppressed TLR agonists-stimulated up-regulation in IL-6 and IL-23p19 production in murine BMDCs, and prevented Th17 differentiation and suppressed IL-17 secretion by the T cells in a BMDC-T cell co-culture system. CONCLUSION: DZ2002 effectively ameliorates lupus syndrome in NZB/W F1 mice by regulating TLR signaling-mediated antigen presenting cell (APC) responses.


Subject(s)
Adenine/analogs & derivatives , Antigen-Presenting Cells/drug effects , Butyrates/pharmacology , Toll-Like Receptors/metabolism , Adenine/pharmacology , Animals , Antigen-Presenting Cells/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female , Glomerulonephritis/drug therapy , Glomerulonephritis/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NZB
19.
Acta Pharmacol Sin ; 34(7): 921-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23645010

ABSTRACT

AIM: To investigate the effects and underlying mechanisms of 118, a novel derivative of mycophenolic acid, in a murine allogeneic skin graft model. METHODS: Skin grafts were conducted by grafting BALB/c donor tail skin into C57BL/6 skin beds (allograft) or by grafting female C57BL/6 donor tail skin into female C57BL/6 skin beds (syngraft). The mice were treated with the derivative 118 (40 mg·kg(-1)·d(-1), po) for 13 d (3 d before and 10 d after transplantation). Skin grafts, splenocytes and graft-infiltrated lymphocytes were isolated and examined ex vivo. The effects of the derivative 118 on naive CD4(+) T cell differentiation were examined in vitro. RESULTS: Treatment with the derivative 118 dramatically increased the survival rate of murine allogeneic skin grafts. Flow cytometric analysis and H&E staining showed that the derivative significantly decreased inflammatory cell infiltration into the grafts. The levels of the chemokines CXCL1, CXCL2, CCL7, and CCL2 were reduced in the derivative 118-treated grafts. Additionally, the derivative 118 significantly suppressed the IL-17 levels in the grafts but did not affect the differentiation of systemic helper T cells in the murine allogeneic skin graft model. Furthermore, IL-23p19 expression was suppressed in the grafts from the derivative 118-treated group, which might be due to decreases in TLR4 and MyD88 expression. Finally, the derivative 118 did not exert direct influences on helper T cell differentiation in vitro. CONCLUSION: Treatment with the mycophenolic acid derivative 118 improves murine allogeneic skin grafts by decreasing IL-23 expression and suppressing local IL-17 secretion in the grafts, rather than directly inhibiting Th17 differentiation.


Subject(s)
Graft Survival/drug effects , Interleukin-17/antagonists & inhibitors , Interleukin-17/biosynthesis , Mycophenolic Acid/pharmacology , Skin Transplantation/methods , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Coculture Techniques , Female , Graft Survival/immunology , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Treatment Outcome
20.
Int J Oncol ; 42(2): 507-16, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23258564

ABSTRACT

The anti­erbB2 scFv­Fc­IL­2 fusion protein (HFI) is the basis for development of a novel targeted anticancer drug, in particular for the treatment of HER2­positive cancer patients. HFI was fused with the anti­erbB2 antibody and human IL­2 by genetic engineering technology and by antibody targeting characteristics of HFI. IL­2 was recruited to target cells to block HER2 signaling, inhibit or kill tumor cells, improve the immune capacity, reduce the dose of antibody and IL­2 synergy. In order to analyse HFI drug ability, HFI plasmid stability was verified by HFI expression of the trend of volume changes. Additionally, HFI could easily precipitate and had progressive characteristics and thus, the buffer system of the additive phosphate­citric acid buffer, arginine, Triton X­100 or Tween­80, the establishment of a microfiltration, ion exchange, affinity chromatography and gel filtration chromatography­based purification process were explored. HFI samples were obtained according to the requirements of purity, activity and homogeneity. In vivo, HFI significantly delayed HER2 overexpression of non­small cell lung cancer (Calu­3) in human non­small cell lung cancer xenografts in nude mice, and the inhibition rate was more than 60% (P<0.05) in the group treated with 1 mg/kg the HFI dose; HFI significantly inhibited HER2 expression of breast cancer (FVB/neu) transgenic mouse tumor growth in 1 mg/kg of the HFI dose group, and in the following treatment the 400 mm3 tumors disappeared completely. Combined with other HFI test data analysis, HFI not only has good prospects, but also laid the foundation for the development of antibody­cytokine fusion protein­like drugs.


Subject(s)
Breast Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Interleukin-2/genetics , Receptor, ErbB-2/genetics , Recombinant Fusion Proteins/genetics , Animals , Antibodies/genetics , Antibodies/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Interleukin-2/immunology , MCF-7 Cells , Mice , Protein Stability , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Recombinant Fusion Proteins/chemistry , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...