Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Apoptosis ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704789

ABSTRACT

Ferroptosis is a new programmed cell death characterized by iron-dependent lipid peroxidation. Targeting ferroptosis is considered a promising strategy for anti-cancer therapy. Recently, natural compound has gained increased attention for their advantage in cancer treatment, and the exploration of natural compounds as ferroptosis inducers offers a hopeful avenue for advancing cancer treatment modalities. Emodin is a natural anthraquinone derivative in many widely used Chinese medicinal herbs. In our previous study, we predicted that the anti-cancer effect of Emodin might related to ferroptosis by using RNA-seq in colorectal cancer (CRC). Thus, in this study, we aim to investigate the molecular mechanism underlying Emodin-mediated ferroptosis in CRC. Cell-based assays including CCK-8, colony formation, EdU, and Annexin V/PI staining were employed to assess Emodin's impact on cell proliferation and apoptosis. Furthermore, various techniques such as FerroOrange staining, C11-BODIPY 581/591 staining, iron, MDA, GSH detection assay and transmission electron microscopy were performed to examine the role of Emodin in ferroptosis. Additionally, specific NCOA4 knockdown cell lines were generated to elucidate the involvement of NCOA4 in Emodin-induced ferroptosis. Moreover, the effects of Emodin on ferroptosis were further confirmed through the application of inhibitors, including Ferrostatin-1, 3-MA, DFO, and PMA. As a results, Emodin inhibited proliferation and induced apoptosis in CRC cells. Emodin could decrease GSH content, xCT and GPX4 expression, meanwhile increasing ROS generation, MDA, and lipid peroxidation, and these effects could reverse by ferroptosis inhibitor, Ferostatin-1, iron chelator DFO, autophagy inhibitor 3-MA and NCOA4 silencing. Moreover, Emodin could inactivate NF-κb pathway, and PMA, an activator of NF-κb pathway could alleviate Emodin-induced ferroptosis in CRC cells. Xenograft mouse model also showed that Emodin suppressed tumor growth and induced ferroptosis in vivo. In conclusion, these results suggested that Emodin induced ferroptosis through NCOA4-mediated ferritinophagy by inactivating NF-κb pathway in CRC cells. These findings not only identified a novel role for Emodin in ferroptosis but also indicated that Emodin may be a valuable candidate for the development of an anti-cancer agent.

3.
ACS Appl Mater Interfaces ; 16(10): 12974-12985, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416692

ABSTRACT

Foot activity can reflect numerous physiological abnormalities in the human body, making gait a valuable metric in health monitoring. Research on flexible sensors for gait monitoring has focused on high sensitivity, wide working range, fast response, and low detection limit, but challenges remain in areas such as elasticity, antibacterial activity, user-friendliness, and long-term stability. In this study, we have developed a novel capacitive pressure sensor that offers an ultralow detection limit of 1 Pa, wide detection ranges from 1 Pa to 2 MPa, a high sensitivity of 0.091 kPa-1, a fast response time of 71 ms, and exceptional stability over 6000 cycles. This sensor not only has the ability of accurately discriminating mechanical stimuli but also meets the requirements of elasticity, antibacterial activity, wearable comfort, and long-term stability for gait monitoring. The fabrication method of a dual dielectric layer and integrated composite electrode is simple, cost-effective, stable, and amenable to mass production. Thereinto, the introduction of a dual dielectric layer, based on an optimized electrospinning network and micropillar array, has significantly improved the sensitivity, detection range, elasticity, and antibacterial performance of the sensor. The integrated flexible electrodes are made by template method using composite materials of carbon nanotubes (CNTs), two-dimensional titanium carbide Ti3C2Tx (MXene), and polydimethylsiloxane (PDMS), offering synergistic advantages in terms of conductivity, stability, sensitivity, and practicality. Additionally, we designed a smart insole that integrates the as-prepared sensors with a miniature instrument as a wearable platform for gait monitoring and disease warning. The developed sensor and wearable platform offer a cutting-edge solution for monitoring human activity and detecting diseases in a noninvasive manner, paving the way for future wearable devices and personalized healthcare technologies.


Subject(s)
Nanotubes, Carbon , Humans , Anti-Bacterial Agents , Elasticity , Electric Conductivity , Electrodes
4.
Sci Rep ; 13(1): 23108, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172186

ABSTRACT

In studies to date, meshes based on extracellular matrix (ECM) have been extensively used in clinical applications. Unfortunately, little is known about the function of the immunogenic residual, absorbable profile during the tissue repair process. Moreover, there needs to be a recognized preclinical animal model to investigate the safety and efficacy of extracellular matrix meshes. Herein, we designed and fabricated a kind of SIS mesh followed by a scanned electron micrograph characterization and tested α-Gal antigen clearance rate and DNA residual. In order to prove the biocompatibility of the SIS mesh, cell viability, chemotaxis assay and local tissue reaction were assessed by MTT and RTCA cytotoxicity test in vitro as well as implantation and degradation experiments in vivo. Furthermore, we developed a stable preclinical animal model in the porcine ventral hernia repair investigation, which using laparoscopic plus open hybridization method to evaluate tissue adhesion, explant mechanical performance, and histologic analysis after mesh implantation. More importantly, we established a semi-quantitative scoring system to examine the ECM degradation, tissue remodeling and regeneration in the modified porcine surgical hernia model for the first time. Our results highlight the application prospect of the improved porcine ventral hernia model for the safety and efficacy investigation of hernia repair meshes.


Subject(s)
Hernia, Ventral , Animals , Swine , Hernia, Ventral/surgery , Models, Animal , Prostheses and Implants , Herniorrhaphy/methods , Wound Healing
5.
Chem Biol Interact ; 389: 110866, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38218311

ABSTRACT

ß-Lapachone is a natural product that can promote ROS generation and ultimately triggers tumor cells death by inducing DNA damage. Recent studies have indicated that the targeting of ferroptosis or iron metabolism is a feasible strategy for treating cancer. In this study, bulk RNA-seq analysis suggested that ß-Lapachone might induce ferroptosis in CRC cells. We further tested this hypothesis using a xenograft model of human colorectal cancer as an animal model and in SW620 and DLD-1 of CRC cell lines. Western blot was used to determine the key proteins of ferroptosis (SLC7A11, GPX4), autophagy (LC3B, P62, ATG7), ferritinophagy (NCOA4, FTH1, TFRC), and JNK pathway (p-JNK, JNK, p-c-Jun, c-Jun). The levels of MDA, GSH/GSSG, lipid ROS, and intracellular ferrous iron were determined after ß-Lapachone treatment, and inhibitors of various pathways, including NAC, Ferrostatin-1, DFO, 3-MA, and SP600125 were utilized to explore the molecular mechanism underlying ß-Lapachone-mediated ferroptosis. As the result, we identified that ß-Lapachone inhibited cell proliferation and induced apoptosis, autophagy, and ROS generation. In addition, ß-Lapachone induced ferroptosis as demonstrated by intra-cellular iron overload, increased levels of lipid ROS and MDA. Mechanistically, JNK signaling pathway was involved in ß-Lapachone-induced xCT/GPX4-mediated ferroptosis and NCOA4-mediated ferritinophagy in CRC cells. In vivo experiments in nude mice demonstrated that ß-Lapachone significantly inhibited CRC growth and induced ferroptosis and NCOA4-mediated ferritinophagy. These findings not only identify a novel role for ß-Lapachone in ferroptosis but also indicate that ß-Lapachone may be a valuable candidate for the research and development of anti-cancer therapeutic agents.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Naphthoquinones , Animals , Mice , Humans , MAP Kinase Signaling System , Mice, Nude , Reactive Oxygen Species , Autophagy , Transcription Factors , Iron , Colorectal Neoplasms/drug therapy , Lipids , Nuclear Receptor Coactivators
6.
ACS Appl Mater Interfaces ; 16(3): 3532-3541, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38225868

ABSTRACT

Triboelectric nanogenerators (TENGs) have attracted a great deal of attention since they can convert ubiquitous mechanical energy into electrical energy and serve as a continuous power source for self-powered sensors. Optimization of the dielectric material composition is an effective way to improve the triboelectric output performance of TENGs. Herein, the hybrid organic-inorganic lead-iodide perovskite Cs0.05FA0.95-xMAxPbI3 was prepared by blade coating and used as a positive friction layer material. Moreover, PVDF-graphene (PG) nanofibers were prepared as negative friction layer materials by electrostatic spinning. The output performance of the TENG was enhanced by varying the MA content of the pervoskite films and the graphene content of the PG nanofibers. The champion output TENG based on Cs0.05FA0.9MA0.05PbI3/PG-0.15 achieved an open-circuit voltage of 245 V, a short-circuit current of 24 µA, and a charge transfer of 80.2 nC. Meanwhile, a maximum power density of 11.23 W m-2 was obtained at 100 MΩ. Moreover, the device exhibits excellent energy-harvesting properties, including excellent stability and durability, rapidly charges capacitors, and lights commercial LEDs and digital tubes.

7.
Genes Environ ; 46(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172945

ABSTRACT

BACKGROUND: Non-SMC condensin I complex subunit D2 (NCAPD2) belongs to the chromosomal structural maintenance family. While the different contribution of NCAPD2 to chromosome in mitosis have been thoroughly investigated, much less is known about the expression of NCAPD2 in pan-cancer. Thus, we used a bioinformatics dataset to conduct a pan-cancer analysis of NCAPD2 to determine its regulatory role in tumors. METHODS: Multiple online databases were analyzed NCAPD2 gene expression, protein level, patient survival and functional enrichment in pan-cancer. Genetic alteration and tumor stemness of NCAPD2 were analyzed using cBioPortal and SangerBox. The GSCA and CellMiner were used to explore the relationship between NCAPD2 and drug sensitivity. The diagnostic value of prognosis was evaluated by ROC curve. Subsequently, the immune infiltration level and immune subtype of NCAPD2 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were analyzed using TIMER1 and TISIDB. RESULTS: NCAPD2 gene expression was significantly higher in most cancers and associated with clinical stage and poor prognosis. Genomic heterogeneity of NCAPD2 promoted the occurrence and development of tumors. GO enrichment analysis suggested NCAPD2 might be involved in DNA repair and immune response. NCAPD2 was involved in immune infiltration of LUAD and LUSC. ROC curves showed that NCAPD2 has important prognosis diagnostic value in LUAD and LUSC. Moreover, NCAPD2 was drug sensitive to topotecan, which may be an optimize immunotherapy. CONCLUSIONS: It was found that NCAPD2 was overexpressed in pan-cancers, which was associated with poor outcomes. Importantly, NCAPD2 could be a diagnostic marker and an immune related biomarker for LUAD and LUSC.

8.
Cancer Cell Int ; 23(1): 301, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017477

ABSTRACT

BACKGROUND: T lymphoma invasion and metastasis 1 (Tiam1) is a tumor related gene that specifically activates Rho-like GTPases Rac1 and plays a critical role in the progression of various malignancies. Glycolysis plays an important role in cancer progression, it is crucial for supplying energy and producing metabolic end products, which can maintain the survival of tumor cells. As yet, however, the mechanism of Tiam1 in glycolysis reprogramming of pancreatic cancer (PC) remains to be clarified. Here, we investigated the functional role of Tiam1 in PC cell proliferation, metastasis and glycolysis reprogramming. It is expected to provide a new direction for clinical treatment. METHODS: The clinical relevance of Tiam1 was evaluated in 66 patients with PC, the effect of Tiam1 on cell proliferation was detected via 5-Ethynyl-2'-deoxyuridine (EdU) and colony formation. The ability of cell migration was detected by the wound healing and Transwell. Quantitative real time polymerase chain reaction (qRT-PCR) and luciferase reporter gene experiments clarify the regulatory relationship of miR-590-5p inhibiting Tiam1. Detection of the molecular mechanism of Tiam1 regulating glucose metabolism reprogramming in PC by glucose metabolism kit. RNA sequencing and Co-Immunoprecipitation (CoIP) have identified glucose transporter protein 3 (SLC2A3) as a key downstream target gene for miR-590-5p/Tiam1. RESULTS: We found that Tiam1 expression increased in PC tissues and was associated with lymph node metastasis. The silencing or exogenous overexpression of Tiam1 significantly altered the proliferation, invasion, and angiogenesis of PC cells through glucose metabolism pathway. In addition, Tiam1 could interact with the crucial SLC2A3 and promote the evolution of PC in a SLC2A3-dependent manner. Moreover, miR-590-5p was found to exacerbate the PC cell proliferation, migration and invasion by targeting Tiam1. Furthermore, the reversing effects on proliferation, migration and invasion were found in PC cells with miR-590-5p/Tiam1 overexpression after applying glucose metabolism inhibition. CONCLUSIONS: Our findings demonstrate the critical role of Tiam1 in PC development and the miR-590-5p/Tiam1/SLC2A3 signaling pathway may serve as a target for new PC therapeutic strategies.

9.
iScience ; 26(10): 107869, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736047

ABSTRACT

Recent studies have demonstrated that CPT1A plays a critical role in tumor metabolism and progression. However, the molecular mechanisms by which CPT1A affects tumorigenicity during PAAD progression remain unclear. In the current research, the bioinformatics analysis and immunohistochemical staining results showed that CPT1A was overexpressed in PAAD tissues and that its overexpression was associated with a shorter survival time in patients with PAAD. Overexpression of CPT1A increased cell proliferation and promoted EMT and glycolytic metabolism in PAAD cells. Mechanistically, CPT1A is able to bind to Snail and facilitate PAAD progression by regulating Snail stability. In summary, our findings revealed Snail-dependent glycolysis as a crucial metabolic pathway by which CPT1A accelerates PAAD progression. Targeting the CPT1A/Snail/glycolysis axis in PAAD to suppress cell proliferation and metastatic dissemination is a new potential treatment strategy to improve the anticancer therapeutic effect and prolong patient survival.

10.
Mol Biol Rep ; 50(10): 8097-8109, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542685

ABSTRACT

BACKGROUND: Ferritin light chain (FTL) is involved in tumor progression, but the specific molecular processes by which FTL affects the development of breast cancer (BRCA) have remained unknown. In this research, the clinicopathological significance of FTL overexpression in BRCA was investigated. METHODS: To investigate the role of FTL in BRCA, we utilized multiple online databases to analyse FTL expression levels in BRCA. Next, we reviewed the expression and localization of the FTL protein in BRCA by immunohistochemistry (IHC), Western blot (WB) and immunofluorescence (IF) staining. To assess the impact of FTL on patient prognosis, we conducted Kaplan‒Meier, univariate and multivariate survival analyses. The relationship between FTL and immune infiltration in BRCA was also analysed in the TISCH and SangerBox databases. MTT, malondialdehyde (MDA) and reactive oxygen species (ROS) assays were carried out to investigate the molecular mechanisms of FTL action in BRCA cells. RESULTS: FTL was significantly upregulated in BRCA compared to normal tissues. Its expression significantly linked to histological grade (P = 0.038), PR expression (P = 0.021), Her2 expression (P = 0.012) and Ki-67 expression (P = 0.040) in patients with BRCA. Furthermore, the expression of the FTL protein was higher in the BRCA cell lines than in the normal breast cells and mainly localized in the cytoplasm. Compared to patients with a low level of FTL expression, patients with a high level of FTL expression showed lower overall survival (OS). More convincingly, univariate and multivariate statistical analyses revealed that FTL expression (P = 0.000), ER expression (P = 0.036) and Her2 expression (P = 0.028) were meaningful independent prognostic factors in patients with BRCA. FTL was associated with immune infiltration in BRCA. Functional experiments further revealed that FTL knockdown inhibited the capacity of proliferation and increased the level of oxidative stress in BRCA cells. CONCLUSIONS: Overexpression of FTL was associated with the progression of BRCA. FTL overexpression may become a biomarker for the evaluation of poor prognosis in patients with BRCA.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Apoferritins/genetics , Apoferritins/metabolism , Prognosis , Survival Analysis , Cytoplasm/metabolism
11.
Int J Oncol ; 63(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37594082

ABSTRACT

Glioblastoma multiforme (GBM) is the most frequent and lethal cancer derived from the central nervous system, of which the mesenchymal (MES) subtype seriously influences the survival and prognosis of patients. NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) serves an important role in the carcinogenesis and progression of various types of cancer; however, the specific mechanism underlying the regulatory effects of NQO1 on GBM is unclear. Thus, the present study aimed to explore the role and mechanism of NQO1 in GBM progression. The results of bioinformatics analysis and immunohistochemistry showed that high expression of NQO1 was significantly related to the MES phenotype of GBM and shorter survival. In addition, MTT, colony formation, immunofluorescence and western blot analyses, and lung metastasis model experiments suggested that silencing NQO1 inhibited the proliferation and metastasis of GBM cells in vitro and in vivo. Furthermore, western blotting showed that the activity of the PI3K/Akt/mTOR signaling pathway was revealed to be inhibited by downregulation of NQO1 expression, whereas it was enhanced by overexpression of NQO1. Notably, co­immunoprecipitation and ubiquitination experiments suggested that Snail was considered an important downstream target of NQO1 in GBM cells. Snail knockdown could eliminate the promoting effect of ectopic NQO1 on the proliferation and invasion of GBM cells, and reduce its effects on the activity of PI3K/Akt/mTOR signaling pathway. These results indicated that NQO1 could promote GBM aggressiveness by activating the PI3K/Akt/mTOR signaling pathway in a Snail­dependent manner, and NQO1 and its relevant pathways may be considered novel targets for GBM therapy.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/genetics , Aggression , NAD , NAD(P)H Dehydrogenase (Quinone)/genetics
12.
Nanomicro Lett ; 15(1): 172, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420119

ABSTRACT

HIGHLIGHTS: Convincing candidates of flexible (stretchable/compressible) electromagnetic interference shielding nanocomposites are discussed in detail from the views of fabrication, mechanical elasticity and shielding performance. Detailed summary of the relationship between deformation of materials and electromagnetic shielding performance. The future directions and challenges in developing flexible (particularly elastic) shielding nanocomposites are highlighted. With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference (EMI) has increased dramatically. The shortcomings of conventional rigid EMI shielding materials include high brittleness, poor comfort, and unsuitability for conforming and deformable applications. Hitherto, flexible (particularly elastic) nanocomposites have attracted enormous interest due to their excellent deformability. However, the current flexible shielding nanocomposites present low mechanical stability and resilience, relatively poor EMI shielding performance, and limited multifunctionality. Herein, the advances in low-dimensional EMI shielding nanomaterials-based elastomers are outlined and a selection of the most remarkable examples is discussed. And the corresponding modification strategies and deformability performance are summarized. Finally, expectations for this quickly increasing sector are discussed, as well as future challenges.

13.
Angew Chem Int Ed Engl ; 62(33): e202306229, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37338503

ABSTRACT

Perovskite solar cells (PSCs) are considered as a promising photovoltaic technology due to their high efficiency and low cost. However, their long-term stability, mechanical durability, and environmental risks are still unable to meet practical needs. To overcome these issues, we designed a multifunctional elastomer with abundant hydrogen bonds and carbonyl groups. The chemical bonding between polymer and perovskite could increase the growth activation energy of perovskite film and promote the preferential growth of high-quality perovskite film. Owing to the low defect density and gradient energy-level alignment, the corresponding device exhibited a champion efficiency of 23.10 %. Furthermore, due to the formation of the hydrogen-bonded polymer network in the perovskite film, the target devices demonstrated excellent air stability and enhanced flexibility for the flexible PSCs. More importantly, the polymer network could coordinate with Pb2+ ions, immobilizing lead atoms to reduce their release into the environment. This strategy paves the way for the industrialization of high-performance flexible PSCs.

14.
Carcinogenesis ; 44(2): 129-142, 2023 05 26.
Article in English | MEDLINE | ID: mdl-36913375

ABSTRACT

Iron metabolism plays an important role in maintaining cellular multiple biological functions. Dysfunction of iron homeostasis-maintaining systems was observed in many diseases, including cancer. Ribosomal L1 domain-containing 1 (RSL1D1) is an RNA-binding protein involved in multiple cellular processes, including cellular senescence, proliferation and apoptosis. However, the regulatory mechanism of RSL1D1 underlying cellular senescence and its biological process in colorectal cancer (CRC) is not clearly understood. Here, we report that RSL1D1 expression is downregulated by ubiquitin-mediated proteolysis in senescence-like CRC cells. RSL1D1, as an anti-senescence factor, is frequently upregulated in CRC, and elevated RSL1D1 prevents CRC cells from senescence-like phenotype, and correlated with poor prognosis of CRC patients. Knockdown of RSL1D1 inhibited cell proliferation, and induced cell cycle arrest and apoptosis. Notably, RSL1D1 plays important roles in regulating iron metabolism of cancer cells. In RSL1D1-knockdown cells, FTH1 expression was significantly decreased, while transferrin receptor 1 expression was increased, leading to intracellular ferrous iron accumulation, which subsequently promoted ferroptosis, indicated by the increased malondialdehyde and decreased GPX4 levels. Mechanically, RSL1D1 directly bounds with 3' untranslated region of FTH1 and subsequently promoted the mRNA stability. Moreover, RSL1D1-mediated downregulation of FTH1 was also observed in H2O2-induced senescence-like cancer cells. Taken together, these findings support RSL1D1 plays an important role in regulating intracellular iron homeostasis in CRC, and suggest that RSL1D1 could be a potential therapeutic target for cancer treatment.


Subject(s)
Ferroptosis , Cells, Cultured , Cellular Senescence/genetics , Ferroptosis/genetics , Hydrogen Peroxide , Iron/metabolism , Humans
15.
Math Biosci Eng ; 20(1): 76-92, 2023 01.
Article in English | MEDLINE | ID: mdl-36650758

ABSTRACT

BACKGROUND: Non-chromosomal structure maintenance protein condensin complex I subunit H (NCAPH) has been reported to play a regulatory role in a variety of cancers and is associated with tumor poor prognosis. This study aims to explore the potential role of NCAPH with a view to providing insights on pathologic mechanisms. METHODS: The expression of NCAPH in different tumors was explored by The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx). The prognostic value of NCAPH was retrieved through GEPIA and Kaplan-Meier Plotter databases. Tumor Immunity Estimation Resource (TIMER) and Single-Sample Gene Set Enrichment Analysis (GSEA) to search for the association of NCAPH with tumor immune infiltration. The cBioPortal and PhosphoSite Plus databases showed NCAPH phosphorylation status in tumors. Gene set enrichment analysis (GSEA) was performed using bioinformatics. RESULTS: Our findings revealed that NCAPH showed high expression levels in a wide range of tumor types, and was strongly correlated with the prognosis of patients. Moreover, a higher phosphorylation level at S59, S67, S76, S190, S222 and T38 site was discovered in head and neck squamous cell carcinoma (HNSC). NCAPH overexpression was positively correlated with the infiltration level of CD8+T cells and myeloid dendritic infiltration in breast cancer and thymoma. CONCLUSIONS: The up-regulation of NCAPH was significantly correlated with the poor prognosis and immune infiltration in pan-cancer, and NCAPH could be served as a potential immunotherapeutic target for cancers.


Subject(s)
Cell Cycle Proteins , Neoplasms , Nuclear Proteins , Humans , CD8-Positive T-Lymphocytes , Computational Biology , Databases, Factual
16.
Small ; 19(6): e2205962, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36461681

ABSTRACT

Wide-bandgap inorganic cesium lead halide CsPbIBr2 is a popular optoelectronic material that researchers are interested in because of the character that balances the power conversion efficiency and stability of solar cells. It also has great potential in semitransparent solar cells, indoor photovoltaics, and as a subcell for tandem solar cells. Although CsPbIBr2 -based devices have achieved good performance, the open-circuit voltage (Voc ) of CsPbIBr2 -based perovskite solar cells (PSCs) is still lower, and it is critical to further reduce large energy losses (Eloss ). Herein, a strategy is proposed for achieving surface p-type doping for CsPbIBr2 -based perovskite for the first time, using 1,5-Diaminopentane dihydroiodide at the perovskite surface to improve hole extraction efficiency. Meanwhile, the adjusted energy levels reduce Eloss and improve Voc of the CsPbIBr2 PSCs. Furthermore, the Cs- and Br-vacancies at the interface are filled, reducing structural disorder and defect states and thus improving the quality of the perovskite film. As a result, the target device achieves a high efficiency of 11.02% with a Voc of 1.33 V, which is among the best values. In addition to the improved performance, the stability of the target device under various conditions is enhanced, and the lead leakage is effectively suppressed.

17.
Research (Wash D C) ; 2022: 9768019, 2022.
Article in English | MEDLINE | ID: mdl-36320633

ABSTRACT

Exploring halogen engineering is of great significance for reducing the density of defect states in crystals of organic-inorganic hybrid perovskites and hence improving the crystal quality. Herein, high-quality single crystals of PEA2PbX4 (X = Cl, Br, I) and their para-F (p-F) substitution analogs are prepared using the facile solution method to study the effects of both p-F substitution and halogen anion engineering. After p-F substitution, the triclinic PEA2PbX4 (X = Cl, Br) and cubic PEA2PbX4 (X = I) crystals unifies to monoclinic crystal structure for p-F-PEA2PbX4 (X = Cl, Br, I) crystals. The p-F substitution and halogen engineering, together with crystal structure variation, enable the tunability of optoelectrical properties. Experimentally, after the p-F substitution, the energy levels are lowered with increased Fermi levels, and the bandgaps of p-F-PEA2PbX4 (X = Cl, Br, I) are slightly reduced. Benefitting from the enhancement of the charge transfer and the reduced trap density by p-F substitution and halogen anion engineering, the average carrier lifetime of the p-F-PEA2PbX4 is obviously reduced. Compared with PEA2PbI4, the X-ray detector based on p-F-PEA2PbI4 perovskite single-crystal has a higher sensitivity of 119.79 µC Gyair -1·cm-2. Moreover, the X-ray detector based on p-F-PEA2PbI4 single crystals exhibits higher radiation stability under high-dose X-ray irradiation, implying long-term operando stability.

18.
Oncogene ; 41(47): 5107-5120, 2022 11.
Article in English | MEDLINE | ID: mdl-36253445

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, and its abnormal metabolism affects the survival and prognosis of patients. Recent studies have found that NAD(P)H quinone oxidoreductase-1 (NQO1) played an important role in tumor metabolism and malignant progression. However, the molecular mechanisms by which NQO1 regulates lipid metabolism during HCC progression remain unclear. In this study, bioinformatics analysis and immunohistochemical results showed that NQO1 was highly expressed in HCC tissues and its high expression was closely related to the poor prognosis of HCC patients. Overexpression of NQO1 promoted the cell proliferation, epithelial-to-mesenchymal transition (EMT) process, and angiogenesis of HCC cells. Luciferase reporter assay further revealed that NQO1/p53 could induce the transcriptional activity of SREBP1, consequently regulating HCC progression through lipid anabolism. In addition, Snail protein was stabilized by NQO1/p53/SREBP1 axis and triggered the EMT process, and participated in the regulatory role of NQO1/p53/SREBP1 axis in HCC. Together, these data indicated that NQO1/SREBP1 axis promoted the progression and metastasis of HCC, and might be a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neoplasm Metastasis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
J Am Stat Assoc ; 117(537): 348-360, 2022.
Article in English | MEDLINE | ID: mdl-35757778

ABSTRACT

We consider estimation of mean and covariance functions of functional snippets, which are short segments of functions possibly observed irregularly on an individual specific subinterval that is much shorter than the entire study interval. Estimation of the covariance function for functional snippets is challenging since information for the far off-diagonal regions of the covariance structure is completely missing. We address this difficulty by decomposing the covariance function into a variance function component and a correlation function component. The variance function can be effectively estimated nonparametrically, while the correlation part is modeled parametrically, possibly with an increasing number of parameters, to handle the missing information in the far off-diagonal regions. Both theoretical analysis and numerical simulations suggest that this hybrid strategy is effective. In addition, we propose a new estimator for the variance of measurement errors and analyze its asymptotic properties. This estimator is required for the estimation of the variance function from noisy measurements.

20.
Carcinogenesis ; 43(7): 705-715, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35511493

ABSTRACT

T lymphoma invasion and metastasis 1 (Tiam1) as a tumor-associated gene specifically activates Rho-like GTPases Rac1 and implicates in the invasive phenotype of many cancers. Altering the glycolytic pathway is foreseen as a sound approach to trigger cancer regression. However, the mechanism of Tiam1 in breast cancer (BC) glycolysis reprogramming remains to be clarified. Here, we reported the Tiam1 high expression and prognostic significance in BC. In vitro and in vivo experimental assays identified the functional role of Tiam1 in promoting BC cell proliferation, metastasis and glycolysis reprogramming. Mechanistically, we showed for the first time that Tiam1 could interact with the crucial glycolytic enzyme phosphofructokinase, liver type (PFKL) and promote the evolution of BC in a PFKL-dependent manner. Moreover, miR-21-5p was found to exacerbate the BC proliferation and aggression by targeting Tiam1. Altogether, our study highlights the critical role of Tiam1 in BC development and that the miR-21-5p/Tiam1/PFKL signaling pathway may serve as a target for new anti-BC therapeutic strategies.


Subject(s)
Breast Neoplasms , Glycolysis , MicroRNAs , Phosphofructokinase-1, Liver Type , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Humans , Liver/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Phosphofructokinase-1, Liver Type/metabolism , Phosphofructokinases/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...