Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 95: 17-27, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27267567

ABSTRACT

The intracellular release mechanism of hydrophobic molecules from surface-functionalized mesoporous silica nanoparticles was studied in relation to the biodegradation behavior of the nanocarrier, with the purpose of determining the dominant release mechanism for the studied drug delivery system. To be able to follow the real-time intracellular release, a hydrophobic fluorescent dye was used as model drug molecule. The in vitro release of the dye was investigated under varying conditions in terms of pH, polarity, protein and lipid content, presence of hydrophobic structures and ultimately, in live cancer cells. Results of investigating the drug delivery system show that the degradation and drug release mechanisms display a clear interdependency in simple aqueous solvents. In pure aqueous media, the cargo release was primarily dependent on the degradation of the nanocarrier, while in complex media, mimicking intracellular conditions, the physicochemical properties of the cargo molecule itself and its interaction with the carrier and/or surrounding media were found to be the main release-governing factors. Since the material degradation was retarded upon loading with hydrophobic guest molecules, the cargo could be efficiently delivered into live cancer cells and released intracellularly without pronounced premature release under extracellular conditions. From a rational design point of view, pinpointing the interdependency between these two processes can be of paramount importance considering future applications and fundamental understanding of the drug delivery system.


Subject(s)
Drug Carriers/metabolism , Drug Liberation/physiology , Hydrophobic and Hydrophilic Interactions , Intracellular Fluid/metabolism , Nanoparticles/metabolism , Silicon Dioxide/metabolism , Drug Carriers/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry
2.
Small ; 12(12): 1578-92, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26807551

ABSTRACT

Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure-based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self-regenerating cell labels for long-term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis.


Subject(s)
Cell Tracking/methods , Fluorescent Dyes/chemistry , Optical Phenomena , Silicon Dioxide/chemistry , Animals , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diagnostic Imaging , Exocytosis , Female , Flow Cytometry , Fluorescence , Humans , Mice, Nude , Nanoparticles/ultrastructure , Porosity , Quantum Dots/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...