Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Nucl Med ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360052

ABSTRACT

PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.

2.
Eur J Nucl Med Mol Imaging ; 50(4): 1183-1194, 2023 03.
Article in English | MEDLINE | ID: mdl-36416908

ABSTRACT

PURPOSE: Glioblastoma multiforme (GBM) is the most common glioma and standard therapies can only slightly prolong the survival. Neo-vascularization is a potential target to image tumor microenvironment, as it defines its brain invasion. We investigate [18F]rhPSMA-7.3 with PET/MRI for quantitative imaging of neo-vascularization in GBM bearing mice and human tumor tissue and compare it to [18F]FET and [18F]fluciclovine using PET pharmacokinetic modeling (PKM). METHODS: [18F]rhPSMA-7.3, [18F]FET, and [18F]fluciclovine were i.v. injected with 10.5 ± 3.1 MBq, 8.0 ± 2.2 MBq, 11.5 ± 1.9 MBq (n = 28, GL261-luc2) and up to 90 min PET/MR imaged 21/28 days after surgery. Regions of interest were delineated on T2-weighted MRI for (i) tumor, (ii) brain, and (iii) the inferior vena cava. Time-activity curves were expressed as SUV mean, SUVR and PKM performed using 1-/2-tissue-compartment models (1TCM, 2TCM), Patlak and Logan analysis (LA). Immunofluorescent staining (IFS), western blotting, and autoradiography of tumor tissue were performed for result validation. RESULTS: [18F]rhPSMA-7.3 showed a tumor uptake with a tumor-to-background-ratio (TBR) = 2.1-2.5, in 15-60 min. PKM (2TCM) confirmed higher K1 (0.34/0.08, p = 0.0012) and volume of distribution VT (0.24/0.1, p = 0.0017) in the tumor region compared to the brain. Linearity in LA and similar k3 = 0.6 and k4 = 0.47 (2TCM, tumor, p = ns) indicated reversible binding. K1, an indicator for vascularization, increased (0.1/0.34, 21 to 28 days, p < 0.005). IFS confirmed co-expression of PSMA and tumor vascularization. [18F]fluciclovine showed higher TBR (2.5/1.8, p < 0.001, 60 min) and VS (1.3/0.7, p < 0.05, tumor) compared to [18F]FET and LA indicated reversible binding. VT increased (p < 0.001, tumor, 21 to 28 days) for [18F]FET (0.5-1.4) and [18F]fluciclovine (0.84-1.5). CONCLUSION: [18F]rhPSMA-7.3 showed to be a potential candidate to investigate the tumor microenvironment of GBM. Following PKM, this uptake was associated with tumor vascularization. In contrast to what is known from PSMA-PET in prostate cancer, reversible binding was found for [18F]rhPSMA-7.3 in GBM, contradicting cellular trapping. Finally, [18F]fluciclovine was superior to [18F]FET rendering it more suitable for PET imaging of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Prostatic Neoplasms , Male , Humans , Animals , Mice , Glioblastoma/diagnostic imaging , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Tyrosine/pharmacokinetics , Tumor Microenvironment
3.
J Nucl Cardiol ; 29(1): 216-225, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32415628

ABSTRACT

OBJECTIVES: We aimed to develop a dynamic imaging technique for a novel PET superoxide tracer, [18F]DHMT, to allow for absolute quantification of myocardial reactive oxygen species (ROS) production in a large animal model. METHODS: Six beagle dogs underwent a single baseline dynamic [18F]DHMT PET study, whereas one animal underwent three serial dynamic studies over the course of chronic doxorubicin administration (1 mg·kg-1·week-1 for 15 weeks). During the scans, sequential arterial blood samples were obtained for plasma metabolite correction. The optimal compartment model and graphical analysis method were identified for kinetic modeling. Values for the left ventricular (LV) net influx rate, Ki, were reported for all the studies and compared with the LV standard uptake values (SUVs) and the LV-to-blood pool SUV ratios from the 60 to 90 minute static images. Parametric images were also generated. RESULTS: [18F]DHMT followed irreversible kinetics once oxidized within the myocardium in the presence of superoxide, as evidenced by the fitting generated by the irreversible two-tissue (2Ti) compartment model and the linearity of Patlak analysis. Myocardial Ki values showed a weak correlation with LV SUV (R2 = 0.27), but a strong correlation with LV-to-blood pool SUV ratio (R2 = 0.92). Generation of high-quality parametric images showed superior myocardial to blood contrast compared to static images. CONCLUSIONS: A dynamic PET imaging technique for [18F]DHMT was developed with full and simplified kinetic modeling for absolute quantification of myocardial superoxide production in a large animal model.


Subject(s)
Positron-Emission Tomography , Superoxides , Animals , Dogs , Feasibility Studies , Humans , Myocardium , Positron-Emission Tomography/methods , Reactive Oxygen Species
4.
Eur J Nucl Med Mol Imaging ; 49(5): 1482-1496, 2022 04.
Article in English | MEDLINE | ID: mdl-34761284

ABSTRACT

PURPOSE: To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS: The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS: SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION: We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.


Subject(s)
Membrane Glycoproteins , Synaptic Vesicles , Aminoacridines , Animals , Brain/diagnostic imaging , Brain/metabolism , Humans , Membrane Glycoproteins/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Synaptic Vesicles/metabolism
5.
ACS Omega ; 6(42): 27676-27683, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34722967

ABSTRACT

A series of synaptic vesicle protein 2A (SV2A) ligands were synthesized to explore the structure-activity relationship and to help further investigate a hydrogen bonding pharmacophore hypothesis. Racemic SynVesT-1 was used as a lead compound to explore the replacement of the 3-methyl group on the pyridinyl moiety with halogens and hydrocarbons. Pyridinyl isomers of racemic SynVesT-1 were also investigated. Highly potent analogs were discovered including a 3-iodo pyridinyl ligand amenable to investigation as a PET or SPECT imaging agent.

6.
Pharmaceuticals (Basel) ; 14(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069548

ABSTRACT

The G protein-coupled adenosine A2B receptor is suggested to be involved in various pathological processes accompanied by increased levels of adenosine as found in inflammation, hypoxia, and cancer. Therefore, the adenosine A2B receptor is currently in focus as a novel target for cancer therapy as well as for noninvasive molecular imaging via positron emission tomography (PET). Aiming at the development of a radiotracer labeled with the PET radionuclide fluorine-18 for imaging the adenosine A2B receptor in brain tumors, one of the most potent and selective antagonists, the xanthine derivative PSB-603, was selected as a lead compound. As initial biodistribution studies in mice revealed a negligible brain uptake of [3H]PSB-603 (SUV3min: 0.2), structural modifications were performed to optimize the physicochemical properties regarding blood-brain barrier penetration. Two novel fluorinated derivatives bearing a 2-fluoropyridine (5) moiety and a 4-fluoro-piperidine (6) moiety were synthesized, and their affinity towards the four adenosine receptor subtypes was determined in competition binding assays. Both compounds showed high affinity towards the adenosine A2B receptor (Ki (5) = 9.97 ± 0.86 nM; Ki (6) = 12.3 ± 3.6 nM) with moderate selectivity versus the other adenosine receptor subtypes.

7.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32366046

ABSTRACT

The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.


Subject(s)
Adenosine/chemistry , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Receptor, Adenosine A2B/metabolism , Adenosine A2 Receptor Antagonists/chemistry , Animals , Female , Humans , Mice , Molecular Structure
8.
ACS Chem Neurosci ; 11(4): 592-603, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31961649

ABSTRACT

Synaptic vesicle glycoprotein 2A (SV2A) is a 12-pass transmembrane glycoprotein ubiquitously expressed in presynaptic vesicles. In vivo imaging of SV2A using PET has potential applications in the diagnosis and prognosis of a variety of neuropsychiatric diseases, e.g., Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, autism, epilepsy, stroke, traumatic brain injury, post-traumatic stress disorder, depression, etc. Herein, we report the synthesis and evaluation of a new 18F-labeled SV2A PET imaging probe, [18F]SynVesT-2, which possesses fast in vivo binding kinetics and high specific binding signals in non-human primate brain.


Subject(s)
Alzheimer Disease/pathology , Epilepsy/pathology , Membrane Glycoproteins/metabolism , Synaptic Vesicles/pathology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Epilepsy/diagnosis , Humans , Nerve Tissue Proteins/metabolism , Primates/metabolism , Synaptic Vesicles/metabolism
9.
Bioorg Med Chem ; 26(16): 4650-4663, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30104122

ABSTRACT

On the basis of a pyrazine core structure, three new adenosine A2B receptor ligands (7a-c) were synthesized containing a 2-fluoropyridine moiety suitable for 18F-labeling. Compound 7a was docked into a homology model of the A2B receptor based on X-ray structures of the related A2A receptor, and its interactions with the adenosine binding site were rationalized. Binding affinity data were determined at the four human adenosine receptor subtypes. Despite a rather low selectivity regarding the A1 receptor, 7a was radiolabeled as the most suitable candidate (Ki(A2B) = 4.24 nM) in order to perform in vivo studies in mice with the aim to estimate fundamental pharmacokinetic characteristics of the compound class. Organ distribution studies and a single PET study demonstrated brain uptake of [18F]7a with a standardized uptake value (SUV) of ≈1 at 5 min post injection followed by a fast wash out. Metabolism studies of [18F]7a in mice revealed the formation of a blood-brain barrier penetrable radiometabolite, which could be structurally identified. The results of this study provide an important basis for the design of new derivatives with improved binding properties and metabolic stability in vivo.


Subject(s)
Contrast Media/chemical synthesis , Positron-Emission Tomography , Pyrazines/chemistry , Radiopharmaceuticals/chemical synthesis , Receptor, Adenosine A2B/metabolism , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Brain/metabolism , Contrast Media/chemistry , Contrast Media/metabolism , Female , Fluorine Radioisotopes/chemistry , Humans , Mice , Molecular Dynamics Simulation , Protein Structure, Tertiary , Pyrazines/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Receptor, Adenosine A2B/chemistry
10.
Bioorg Med Chem ; 25(19): 5107-5113, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28347632

ABSTRACT

The vesicular acetylcholine transporter (VAChT) is an important target for in vivo imaging of neurodegenerative processes using positron emission tomography (PET). So far the development of VAChT PET radioligands is based on the single known lead compound vesamicol. In this study we investigated a recently published spiroindoline based compound class (Sluder et al., 2012), which was suggested to have potential in the development of VAChT ligands. Therefore, we synthesized a small series of N,N-substituted spiro[indoline-3,4'-piperidine] derivatives and determined their in vitro binding affinities toward the VAChT. In order to investigate the selectivity, the off-target binding toward σ1 and σ2 receptors was determined. The compounds possessed VAChT affinities with Ki values in the range of 39-376nM. Binding affinities toward the σ1 and σ2 receptors are in a similar range indicating that the strong structural difference between the spiroindolines and vesamicol did not improve the selectivity. The observed potential to additionally bind to σ receptors let us assume that the herein investigated spiroindolines are not suitable to replace vesamicol as lead compound for the development of VAChT ligands.


Subject(s)
Indoles/chemistry , Piperidines/chemistry , Positron-Emission Tomography/methods , Spiro Compounds/chemistry , Vesicular Acetylcholine Transport Proteins/analysis , Animals , Brain Chemistry , Female , Ligands , Liver/chemistry , PC12 Cells , Radioisotopes/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...