Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Proc Natl Acad Sci U S A ; 121(17): e2320713121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621119

ABSTRACT

As the SARS-CoV-2 virus continues to spread and mutate, it remains important to focus not only on preventing spread through vaccination but also on treating infection with direct-acting antivirals (DAA). The approval of Paxlovid, a SARS-CoV-2 main protease (Mpro) DAA, has been significant for treatment of patients. A limitation of this DAA, however, is that the antiviral component, nirmatrelvir, is rapidly metabolized and requires inclusion of a CYP450 3A4 metabolic inhibitor, ritonavir, to boost levels of the active drug. Serious drug-drug interactions can occur with Paxlovid for patients who are also taking other medications metabolized by CYP4503A4, particularly transplant or otherwise immunocompromised patients who are most at risk for SARS-CoV-2 infection and the development of severe symptoms. Developing an alternative antiviral with improved pharmacological properties is critical for treatment of these patients. By using a computational and structure-guided approach, we were able to optimize a 100 to 250 µM screening hit to a potent nanomolar inhibitor and lead compound, Mpro61. In this study, we further evaluate Mpro61 as a lead compound, starting with examination of its mode of binding to SARS-CoV-2 Mpro. In vitro pharmacological profiling established a lack of off-target effects, particularly CYP450 3A4 inhibition, as well as potential for synergy with the currently approved alternate antiviral, molnupiravir. Development and subsequent testing of a capsule formulation for oral dosing of Mpro61 in B6-K18-hACE2 mice demonstrated favorable pharmacological properties, efficacy, and synergy with molnupiravir, and complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate.


Subject(s)
Antiviral Agents , Cytidine/analogs & derivatives , Hepatitis C, Chronic , Hydroxylamines , Lactams , Leucine , Nitriles , Proline , Ritonavir , Humans , Animals , Mice , Antiviral Agents/pharmacology , Clinical Protocols , Drug Combinations
2.
Viruses ; 16(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38400021

ABSTRACT

Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Cricetinae , Animals , Humans , COVID-19/pathology , Mesocricetus , SARS-CoV-2 , Influenza, Human/pathology , Lung , Disease Models, Animal
3.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Article in English | MEDLINE | ID: mdl-36697369

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
4.
Adv Virus Res ; 112: 1-29, 2022.
Article in English | MEDLINE | ID: mdl-35840179

ABSTRACT

Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.


Subject(s)
Flavivirus , RNA Viruses , Flavivirus/genetics , Genome, Viral , Positive-Strand RNA Viruses , RNA Viruses/genetics , Reverse Genetics/methods , Virus Replication/genetics
5.
J Virol ; 96(8): e0194621, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35353000

ABSTRACT

Hepatitis C virus (HCV) is a positive-strand RNA virus that remains one of the main contributors to chronic liver disease worldwide. Studies over the last 30 years have demonstrated that HCV contains a highly structured RNA genome and many of these structures play essential roles in the HCV life cycle. Despite the importance of riboregulation in this virus, most of the HCV RNA genome remains functionally unstudied. Here, we report a complete secondary structure map of the HCV RNA genome in vivo, which was studied in parallel with the secondary structure of the same RNA obtained in vitro. Our results show that HCV is folded extensively in the cellular context. By performing comprehensive structural analyses on both in vivo data and in vitro data, we identify compact and conserved secondary and tertiary structures throughout the genome. Genetic and evolutionary functional analyses demonstrate that many of these elements play important roles in the virus life cycle. In addition to providing a comprehensive map of RNA structures and riboregulatory elements in HCV, this work provides a resource for future studies aimed at identifying therapeutic targets and conducting further mechanistic studies on this important human pathogen. IMPORTANCE HCV has one of the most highly structured RNA genomes studied to date, and it is a valuable model system for studying the role of RNA structure in protein-coding genes. While previous studies have identified individual cases of regulatory RNA structures within the HCV genome, the full-length structure of the HCV genome has not been determined in vivo. Here, we present the complete secondary structure map of HCV determined both in cells and from corresponding transcripts generated in vitro. In addition to providing a comprehensive atlas of functional secondary structural elements throughout the genomic RNA, we identified a novel set of tertiary interactions and demonstrated their functional importance. In terms of broader implications, the pipeline developed in this study can be applied to other long RNAs, such as long noncoding RNAs. In addition, the RNA structural motifs characterized in this study broaden the repertoire of known riboregulatory elements.


Subject(s)
Genome, Viral , Hepacivirus , RNA, Viral , Genome, Viral/genetics , Hepacivirus/genetics , Hepatitis C/virology , Humans , RNA, Untranslated/chemistry , RNA, Viral/chemistry , RNA, Viral/genetics
6.
ACS Med Chem Lett ; 12(8): 1325-1332, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34408808

ABSTRACT

Non-covalent inhibitors of the main protease (Mpro) of SARS-CoV-2 having a pyridinone core were previously reported with IC50 values as low as 0.018 µM for inhibition of enzymatic activity and EC50 values as low as 0.8 µM for inhibition of viral replication in Vero E6 cells. The series has now been further advanced by consideration of placement of substituted five-membered-ring heterocycles in the S4 pocket of Mpro and N-methylation of a uracil ring. Free energy perturbation calculations provided guidance on the choice of the heterocycles, and protein crystallography confirmed the desired S4 placement. Here we report inhibitors with EC50 values as low as 0.080 µM, while remdesivir yields values of 0.5-2 µM in side-by-side testing with infectious SARS-CoV-2. A key factor in the improvement is enhanced cell permeability, as reflected in PAMPA measurements. Compounds 19 and 21 are particularly promising as potential therapies for COVID-19, featuring IC50 values of 0.044-0.061 µM, EC50 values of ca. 0.1 µM, good aqueous solubility, and no cytotoxicity.

7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34185680

ABSTRACT

Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Frameshifting, Ribosomal/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Betacoronavirus , Chlorocebus aethiops , Fluoroquinolones/pharmacology , Frameshifting, Ribosomal/genetics , Mutation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/physiology , Vero Cells
8.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33147444

ABSTRACT

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus Internalization
9.
bioRxiv ; 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33106809

ABSTRACT

Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires programmed -1 ribosomal frameshifting (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor of SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other beta coronaviruses. Importantly, frameshift inhibition by merafloxacin substantially impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing the proof of principle of targeting -1 PRF as an effective antiviral strategy for SARS-CoV-2.

10.
J Biol Chem ; 295(35): 12426-12436, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32641492

ABSTRACT

Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.


Subject(s)
Hepacivirus/enzymology , Lipid Metabolism , Membrane Lipids/metabolism , Nerve Tissue Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Proteolysis , RNA, Viral/biosynthesis , Serine Proteases/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line, Tumor , Hepacivirus/genetics , Humans , Membrane Lipids/genetics , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , RNA, Viral/genetics , Serine Proteases/genetics , Viral Nonstructural Proteins/genetics
11.
mBio ; 11(2)2020 04 14.
Article in English | MEDLINE | ID: mdl-32291299

ABSTRACT

While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.


Subject(s)
Valosin Containing Protein/metabolism , Virus Uncoating , Yellow fever virus/genetics , Yellow fever virus/physiology , Animals , Cell Line , Cricetinae , Female , Genes, Reporter , Genome, Viral , HEK293 Cells , HeLa Cells , Humans , Kidney/cytology , Mice , Mice, Inbred C57BL , Valosin Containing Protein/genetics , Virus Internalization , Virus Replication
12.
Proc Natl Acad Sci U S A ; 116(43): 21739-21747, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591191

ABSTRACT

Bacterial virulence factors or effectors are proteins targeted into host cells to coopt or interfere with cellular proteins and pathways. Viruses often coopt the same cellular proteins and pathways to support their replication in infected cells. Therefore, we screened the Legionella pneumophila effectors to probe virus-host interactions and identify factors that modulate tomato bushy stunt virus (TBSV) replication in yeast surrogate host. Among 302 Legionella effectors tested, 28 effectors affected TBSV replication. To unravel a coopted cellular pathway in TBSV replication, the identified DrrA effector from Legionella was further exploited. We find that expression of DrrA in yeast or plants blocks TBSV replication through inhibiting the recruitment of Rab1 small GTPase and endoplasmic reticulum-derived COPII vesicles into the viral replication compartment. TBSV hijacks Rab1 and COPII vesicles to create enlarged membrane surfaces and optimal lipid composition within the viral replication compartment. To further validate our Legionella effector screen, we used the Legionella effector LepB lipid kinase to confirm the critical proviral function of PI(3)P phosphoinositide and the early endosomal compartment in TBSV replication. We demonstrate the direct inhibitory activity of LegC8 effector on TBSV replication using a cell-free replicase reconstitution assay. LegC8 inhibits the function of eEF1A, a coopted proviral host factor. Altogether, the identified bacterial effectors with anti-TBSV activity could be powerful reagents in cell biology and virus-host interaction studies. This study provides important proof of concept that bacterial effector proteins can be a useful toolbox to identify host factors and cellular pathways coopted by (+)RNA viruses.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Legionella pneumophila/metabolism , Tombusvirus/growth & development , Virulence Factors/metabolism , rab1 GTP-Binding Proteins/metabolism , Agrobacterium tumefaciens/virology , COP-Coated Vesicles/virology , Legionella pneumophila/pathogenicity , Saccharomyces cerevisiae/virology , Nicotiana/virology , Tombusvirus/metabolism , Virus Replication/physiology
13.
Cell Rep ; 26(7): 1800-1814.e5, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30759391

ABSTRACT

The mechanisms that regulate envelopment of HCV and other viruses that bud intracellularly and/or lack late-domain motifs are largely unknown. We reported that K63 polyubiquitination of the HCV nonstructural (NS) 2 protein mediates HRS (ESCRT-0 component) binding and envelopment. Nevertheless, the ubiquitin signaling that governs NS2 ubiquitination remained unknown. Here, we map the NS2 interactome with the ubiquitin proteasome system (UPS) via mammalian cell-based screens. NS2 interacts with E3 ligases, deubiquitinases, and ligase regulators, some of which are candidate proviral or antiviral factors. MARCH8, a RING-finger E3 ligase, catalyzes K63-linked NS2 polyubiquitination in vitro and in HCV-infected cells. MARCH8 is required for infection with HCV, dengue, and Zika viruses and specifically mediates HCV envelopment. Our data reveal regulation of HCV envelopment via ubiquitin signaling and both a viral protein substrate and a ubiquitin K63-linkage of the understudied MARCH8, with potential implications for cell biology, virology, and host-targeted antiviral design.


Subject(s)
Hepacivirus/metabolism , Hepatitis C/virology , Ubiquitin-Protein Ligases/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , HEK293 Cells , Hepacivirus/pathogenicity , Hepatitis C/genetics , Hepatitis C/metabolism , Humans , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
14.
mBio ; 9(2)2018 03 13.
Article in English | MEDLINE | ID: mdl-29535204

ABSTRACT

Hepatitis C virus (HCV) spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs) AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the µ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2) protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.IMPORTANCE HCV spreads via cell-free infection or cell-to-cell contact that shields it from antibody neutralization, thereby facilitating viral persistence. Yet, factors governing this differential sorting remain unknown. By integrating proteomic, RNA interference, genetic, live-cell imaging, and pharmacological approaches, we uncover differential coopting of host adaptor proteins (APs) to mediate HCV traffic at distinct late steps of the viral life cycle. We reported that AP-1A and AP-2 mediate HCV trafficking during release and assembly, respectively. Here, we demonstrate that dileucine motifs in the NS2 protein mediate AP-1A, AP-1B, and AP-4 binding and cell-free virus release. Moreover, we reveal that AP-4, an adaptor not previously implicated in viral infections, mediates cell-to-cell spread and HCV trafficking. Lastly, we demonstrate cell-to-cell spread regulation by AAK1 and GAK, host kinases controlling APs, and susceptibility to their inhibitors. This study provides mechanistic insights into virus-host determinants that facilitate HCV trafficking, with potential implications for pathogenesis and antiviral agent design.


Subject(s)
Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex 4/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Virus Release , Cell Line , Humans , Immunoprecipitation , Protein Binding , Protein Interaction Mapping
15.
Virus Res ; 248: 53-62, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29477639

ABSTRACT

The development and clinical implementation of direct-acting antivirals (DAAs) has revolutionized the treatment of chronic hepatitis C. Infection with any hepatitis C virus (HCV) genotype can now be eliminated in more than 95% of patients with short courses of all-oral, well-tolerated drugs, even in those with advanced liver disease and liver transplant recipients. DAAs have proven so successful that some now consider HCV amenable to eradication, and continued research on the virus of little remaining medical relevance. However, given 400,000 HCV-related deaths annually important challenges remain, including identifying those who are infected, providing access to treatment and reducing its costs. Moreover, HCV infection rarely induces sterilizing immunity, and those who have been cured with DAAs remain at risk for reinfection. Thus, it is very unlikely that global eradication and elimination of the cancer risk associated with HCV infection can be achieved without a vaccine, yet research in that direction receives little attention. Further, over the past two decades HCV research has spearheaded numerous fundamental discoveries in the fields of molecular and cell biology, immunology and microbiology. It will continue to do so, given the unique opportunities afforded by the reagents and knowledge base that have been generated in the development and clinical application of DAAs. Considering these critical challenges and new opportunities, we conclude that funding for HCV research must be sustained.


Subject(s)
Hepacivirus , Hepatitis C, Chronic/virology , Research , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Capital Financing , Drug Resistance, Viral , Hepacivirus/drug effects , Hepacivirus/physiology , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/prevention & control , Humans , Public Health , Research/economics , Research Personnel , Translational Research, Biomedical , Viral Vaccines/immunology , Workforce
16.
J Infect Dis ; 217(3): 466-473, 2018 01 17.
Article in English | MEDLINE | ID: mdl-28968665

ABSTRACT

Background: Controlling hepatitis C virus (HCV) transmission among people who inject drugs (PWID) has focused on preventing sharing syringes and drug preparation paraphernalia, but it is unclear whether HCV incidence linked to sharing paraphernalia reflects contamination of the paraphernalia or syringe-mediated contamination when drugs are shared. Methods: In experiments designed to replicate real-world injection practices when drugs are shared, the residual contents of HCV-contaminated syringes with detachable or fixed needled were passed through the "cookers" and filters used by PWID in preparing drugs for injection and then introduced into a second syringe. All items were tested for the presence of infectious HCV using a chimeric HCV with a luciferase gene. Results: Hepatitis C virus could not be recovered from cookers regardless of input syringe type or cooker design. Recovery was higher when comparing detachable needles to fixed needles for residue in input syringes (73.8% vs 0%), filters (15.4% vs 1.4%), and receptive syringes (93.8% vs 45.7%). Conclusions: Our results, consistent with the hypothesis that sharing paraphernalia does not directly result in HCV transmission but is a surrogate for transmissions resulting from sharing drugs, have important implications for HCV prevention efforts and programs that provide education and safe injection supplies for PWID populations.


Subject(s)
Environmental Microbiology , Hepacivirus/isolation & purification , Microbial Viability , Substance Abuse, Intravenous/complications , Syringes/virology , Disease Transmission, Infectious , Hepacivirus/physiology , Hepatitis C/transmission , Humans
17.
Sci Signal ; 10(482)2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28588082

ABSTRACT

The unfolded protein response (UPR) is an ancient cellular pathway that detects and alleviates protein-folding stresses. The UPR components X-box binding protein 1 (XBP1) and inositol-requiring enzyme 1α (IRE1α) promote type I interferon (IFN) responses. We found that Xbp1-deficient mouse embryonic fibroblasts and macrophages had impaired antiviral resistance. However, this was not because of a defect in type I IFN responses but rather an inability of Xbp1-deficient cells to undergo viral-induced apoptosis. The ability to undergo apoptosis limited infection in wild-type cells. Xbp1-deficient cells were generally resistant to the intrinsic pathway of apoptosis through an indirect mechanism involving activation of the nuclease IRE1α. We observed an IRE1α-dependent reduction in the abundance of the proapoptotic microRNA miR-125a and a corresponding increase in the amounts of the members of the antiapoptotic Bcl-2 family. The activation of IRE1α by the hepatitis C virus (HCV) protein NS4B in XBP1-proficient cells also conferred apoptosis resistance and promoted viral replication. Furthermore, we found evidence of IRE1α activation and decreased miR-125a abundance in liver biopsies from patients infected with HCV compared to those in the livers of healthy controls. Our results reveal a prosurvival role for IRE1α in virally infected cells and suggest a possible target for IFN-independent antiviral therapy.


Subject(s)
Apoptosis , Endoribonucleases/metabolism , Hepatitis C/virology , Herpes Simplex/virology , MicroRNAs/genetics , Protein Serine-Threonine Kinases/metabolism , Vesicular Stomatitis/virology , Animals , Case-Control Studies , Cells, Cultured , Female , Hepacivirus/pathogenicity , Hepatitis C/metabolism , Hepatitis C/pathology , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Liver/virology , Male , Mice , Mice, Knockout , Simplexvirus/pathogenicity , Vesicular Stomatitis/metabolism , Vesicular Stomatitis/pathology , Vesicular stomatitis Indiana virus/pathogenicity , Viral Nonstructural Proteins/metabolism , Virus Replication , X-Box Binding Protein 1/physiology
18.
PLoS Negl Trop Dis ; 10(10): e0005048, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27706161

ABSTRACT

BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.


Subject(s)
Genome, Viral , Interferon Type I/antagonists & inhibitors , RNA, Viral/genetics , Zika Virus Infection/virology , Zika Virus/isolation & purification , A549 Cells , Animals , Brazil/epidemiology , DEAD Box Protein 58/metabolism , Disease Outbreaks , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Interferon Type I/biosynthesis , Interferon Type I/genetics , Phylogeny , RNA, Viral/isolation & purification , Vero Cells , Virus Replication , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus/physiology
19.
JCI Insight ; 1(13)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27595140

ABSTRACT

The strong association of Zika virus infection with congenital defects has led to questions of how a flavivirus is capable of crossing the placental barrier to reach the fetal brain. Here, we demonstrate permissive Zika virus infection of primary human placental macrophages, commonly referred to as Hofbauer cells, and placental villous fibroblasts. We also demonstrate Zika virus infection of Hofbauer cells within the context of the tissue ex vivo using term placental villous explants. In addition to amplifying infectious virus within a usually inaccessible area, the putative migratory activities of Hofbauer cells may aid in dissemination of Zika virus to the fetal brain. Understanding the susceptibility of placenta-specific cell types will aid future work around and understanding of Zika virus-associated pregnancy complications.

20.
Cell Rep ; 16(10): 2576-2592, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27568284

ABSTRACT

The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.


Subject(s)
Mitosis , Neural Stem Cells/enzymology , Neural Stem Cells/virology , Neuroepithelial Cells/virology , Neuroglia/virology , Protein Serine-Threonine Kinases/metabolism , Zika Virus/pathogenicity , Brain/embryology , Brain/pathology , Brain/virology , Cell Death/drug effects , Centrosome/drug effects , Centrosome/metabolism , Fetus/virology , Gene Expression Profiling , Humans , Immunity, Innate/drug effects , Microcephaly/pathology , Microcephaly/virology , Mitochondria/drug effects , Mitochondria/metabolism , Mitosis/drug effects , Neocortex/pathology , Neural Stem Cells/immunology , Neural Stem Cells/ultrastructure , Neuroepithelial Cells/drug effects , Neuroepithelial Cells/immunology , Neuroepithelial Cells/ultrastructure , Neuroglia/pathology , Neuroglia/ultrastructure , Neurons/drug effects , Neurons/pathology , Neurons/virology , Neuroprotective Agents/pharmacology , Nucleosides/pharmacology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Spinal Cord/pathology , Transcription, Genetic/drug effects , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus/ultrastructure , Zika Virus Infection/pathology , Zika Virus Infection/virology , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...