Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1201439, 2024.
Article in English | MEDLINE | ID: mdl-38482013

ABSTRACT

Introduction: Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that neutralization of interleukin (IL)-6 in obese AT organ cultures inhibits proliferation of ATMs, which occurs preferentially in alternatively activated macrophage phenotype. Methods: In this study, we investigated AT biology and the metabolic phenotype of mice with myeloid cell-specific IL-6Rα deficiency (Il6ra Δmyel) after normal chow and 20 weeks of high-fat diet focusing on AT inflammation, ATM polarization and proliferation. Using organotypical AT culture and bone marrow derived macrophages (BMDMs) of IL-4Rα knockout mice (Il4ra -/-) we studied IL-6 signaling. Results: Obese Il6ra Δmyel mice exhibited no differences in insulin sensitivity or histological markers of AT inflammation. Notably, we found a reduction of ATMs expressing the mannose receptor 1 (CD206), as well as a decrease of the proliferation marker Ki67 in ATMs of Il6ra Δmyel mice. Importantly, organotypical AT culture and BMDM data of Il4ra -/- mice revealed that IL-6 mediates a shift towards the M2 phenotype independent from the IL-6/IL-4Rα axis. Discussion: Our results demonstrate IL-4Rα-independent anti-inflammatory effects of IL-6 on macrophages and the ability of IL-6 to maintain proliferation rates in obese AT.


Subject(s)
Diabetes Mellitus, Type 2 , Interleukin-6 , Mice , Animals , Interleukin-6/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipose Tissue/metabolism , Macrophages/metabolism , Inflammation/metabolism , Mice, Knockout , Obesity/metabolism
2.
J Hepatol ; 80(3): 397-408, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37977244

ABSTRACT

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), monocytes infiltrate visceral adipose tissue promoting local and hepatic inflammation. However, it remains unclear what drives inflammation and how the immune landscape in adipose tissue differs across the NAFLD severity spectrum. We aimed to assess adipose tissue macrophage (ATM) heterogeneity in a NAFLD cohort. METHODS: Visceral adipose tissue macrophages from lean and obese patients, stratified by NAFLD phenotypes, underwent single-cell RNA sequencing. Adipose tissue vascular integrity and breaching was assessed on a protein level via immunohistochemistry and immunofluorescence to determine targets of interest. RESULTS: We discovered multiple ATM populations, including resident vasculature-associated macrophages (ResVAMs) and distinct metabolically active macrophages (MMacs). Using trajectory analysis, we show that ResVAMs and MMacs are replenished by a common transitional macrophage (TransMac) subtype and that, during NASH, MMacs are not effectively replenished by TransMac precursors. We postulate an accessory role for MMacs and ResVAMs in protecting the adipose tissue vascular barrier, since they both interact with endothelial cells and localize around the vasculature. However, across the NAFLD severity spectrum, alterations occur in these subsets that parallel an adipose tissue vasculature breach characterized by albumin extravasation into the perivascular tissue. CONCLUSIONS: NAFLD-related macrophage dysfunction coincides with a loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. IMPACT AND IMPLICATIONS: Our study describes for the first time the myeloid cell landscape in human visceral adipose tissue at single-cell level within a cohort of well-characterized patients with non-alcoholic fatty liver disease. We report unique non-alcoholic steatohepatitis-specific transcriptional changes within metabolically active macrophages (MMacs) and resident vasculature-associated macrophages (ResVAMs) and we demonstrate their spatial location surrounding the vasculature. These dysfunctional transcriptional macrophage states coincided with the loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. Our study provides a theoretical basis for new therapeutic strategies to be directed towards reinstating the endogenous metabolic, homeostatic and cytoprotective functions of ResVAMs and MMacs, including their role in protecting vascular integrity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Endothelial Cells/metabolism , Liver/metabolism , Macrophages/metabolism , Adipose Tissue/metabolism , Inflammation/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982747

ABSTRACT

White adipose tissue (WAT) fibrosis, characterized by an excess of extracellular (ECM) matrix components, is strongly associated with WAT inflammation and dysfunction due to obesity. Interleukin (IL)-13 and IL-4 were recently identified as critical mediators in the pathogenesis of fibrotic diseases. However, their role in WAT fibrosis is still ill-defined. We therefore established an ex vivo WAT organotypic culture system and demonstrated an upregulation of fibrosis-related genes and an increase of α-smooth muscle actin (αSMA) and fibronectin abundance upon dose-dependent stimulation with IL-13/IL-4. These fibrotic effects were lost in WAT lacking il4ra, which encodes for the underlying receptor controlling this process. Adipose tissue macrophages were found to play a key role in mediating IL-13/IL-4 effects in WAT fibrosis as their depletion through clodronate dramatically decreased the fibrotic phenotype. IL-4-induced WAT fibrosis was partly confirmed in mice injected intraperitoneally with IL-4. Furthermore, gene correlation analyses of human WAT samples revealed a strong positive correlation of fibrosis markers with IL-13/IL-4 receptors, whereas IL13 and IL4 correlations failed to confirm this association. In conclusion, IL-13 and IL-4 can induce WAT fibrosis ex vivo and partly in vivo, but their role in human WAT remains to be further elucidated.


Subject(s)
Interleukin-13 , Interleukin-4 , Humans , Mice , Animals , Interleukin-13/genetics , Interleukin-4/genetics , Adipose Tissue/pathology , Adipose Tissue, White/pathology , Fibrosis
4.
Gut ; 71(11): 2179-2193, 2022 11.
Article in English | MEDLINE | ID: mdl-34598978

ABSTRACT

OBJECTIVE: Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN: Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS: While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION: Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Humans , Insulin/metabolism , Insulin Resistance/genetics , Obesity/genetics , Obesity/metabolism , Proteome/metabolism
5.
Cell Death Dis ; 12(6): 579, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34091595

ABSTRACT

A chronic low-grade inflammation within adipose tissue (AT) seems to be the link between obesity and some of its associated diseases. One hallmark of this AT inflammation is the accumulation of AT macrophages (ATMs) around dead or dying adipocytes, forming so-called crown-like structures (CLS). To investigate the dynamics of CLS and their direct impact on the activation state of ATMs, we established a laser injury model to deplete individual adipocytes in living AT from double reporter mice (GFP-labeled ATMs and tdTomato-labeled adipocytes). Hence, we were able to detect early ATM-adipocyte interactions by live imaging and to determine a precise timeline for CLS formation after adipocyte death. Further, our data indicate metabolic activation and increased lipid metabolism in ATMs upon forming CLS. Most importantly, adipocyte death, even in lean animals under homeostatic conditions, leads to a locally confined inflammation, which is in sharp contrast to other tissues. We identified cell size as cause for the described pro-inflammatory response, as the size of adipocytes is above a critical threshold size for efferocytosis, a process for anti-inflammatory removal of dead cells during tissue homeostasis. Finally, experiments on parabiotic mice verified that adipocyte death leads to a pro-inflammatory response of resident ATMs in vivo, without significant recruitment of blood monocytes. Our data indicate that adipocyte death triggers a unique degradation process and locally induces a metabolically activated ATM phenotype that is globally observed with obesity.


Subject(s)
Adipocytes/pathology , Inflammation/physiopathology , Lipid Metabolism/physiology , Macrophages/pathology , Obesity/physiopathology , Animals , Female , Humans , Mice
6.
Eur J Immunol ; 51(6): 1399-1411, 2021 06.
Article in English | MEDLINE | ID: mdl-33784418

ABSTRACT

Obesity is frequently associated with a chronic low-grade inflammation in the adipose tissue (AT) and impaired glucose homeostasis. Adipose tissue macrophages (ATMs) have been shown to accumulate in the inflamed AT either by means of recruitment from the blood or local proliferation. ATM proliferation and activation can be stimulated by TH2 cytokines, such as IL-4 and IL-13, suggesting involvement of CD4-positive T cells in ATM proliferation and activation. Furthermore, several studies have associated T cells to alterations in glucose metabolism. Therefore, we sought to examine a direct impact of CD4-positive T cells on ATM activation, ATM proliferation and glucose homeostasis using an in vivo depletion model. Surprisingly, CD4 depletion did not affect ATM activation, ATM proliferation, or insulin sensitivity. However, CD4 depletion led to a significant improvement of glucose tolerance. In line with this, we found moderate disturbances in pancreatic endocrine function following CD4 depletion. Hence, our data suggest that the effect on glucose metabolism observed after CD4 depletion might be mediated by organs other than AT and independent of AT inflammation.


Subject(s)
Adipose Tissue/immunology , CD4-Positive T-Lymphocytes/immunology , Glucose/metabolism , Inflammation/immunology , Macrophages/immunology , Obesity/immunology , Pancreas/metabolism , Animals , Cell Movement , Cells, Cultured , Homeostasis , Lymphocyte Depletion , Macrophage Activation , Mice , Mice, Inbred C57BL , Pancreas/immunology
7.
Diabetes ; 70(2): 538-548, 2021 02.
Article in English | MEDLINE | ID: mdl-33158932

ABSTRACT

Obesity is associated with chronic low-grade inflammation of visceral adipose tissue (AT) characterized by an increasing number of AT macrophages (ATMs) and linked to type 2 diabetes. AT inflammation is histologically indicated by the formation of so-called crown-like structures, as ATMs accumulate around dying adipocytes, and the occurrence of multinucleated giant cells (MGCs). However, to date, the function of MGCs in obesity is unknown. Therefore, the aim of this study was to characterize MGCs in AT and unravel the function of these cells. We demonstrated that MGCs occurred in obese patients and after 24 weeks of a high-fat diet in mice, accompanying signs of AT inflammation and then representing ∼3% of ATMs in mice. Mechanistically, we found evidence that adipocyte death triggered MGC formation. Most importantly, MGCs in obese AT had a higher capacity to phagocytize oversized particles, such as adipocytes, as shown by live imaging of AT, 45-µm bead uptake ex vivo, and higher lipid content in vivo. Finally, we showed that interleukin-4 treatment was sufficient to increase the number of MGCs in AT, whereas other factors may be more important for endogenous MGC formation in vivo. Most importantly, our data suggest that MGCs are specialized for clearance of dead adipocytes in obesity.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Giant Cells/metabolism , Obesity/metabolism , Phagocytosis/physiology , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Diet, High-Fat , Giant Cells/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Mice , Obesity/pathology
8.
Adipocyte ; 9(1): 1-6, 2020 12.
Article in English | MEDLINE | ID: mdl-31842670

ABSTRACT

Due to the epidemic rise of obesity prevalence, adipose tissue (AT) research is of major interest. Our aim was to study specificity of the most-common Cre/loxP approach for inducible gene manipulation of AT in mice (AdipoqCre-ERT2). We used mice with tamoxifen-sensitive Cre recombinase controlled by the adiponectin promoter (AdipoqCre-ERT2), which were crossed to a tdTomato reporter mouse to visualize the site of recombination on a single-cell resolution. Albeit tamoxifen induced tdTomato expression in this model, also non-stimulated background recombination ('Cre leakage') was detected in AT of untreated Adipoq-CreERT2xTDTO mice in vivo. Quantification of Cre leakage revealed age, sex and genotype as factors impacting on non-induced Cre recombination.


Subject(s)
Adipose Tissue/metabolism , DNA/genetics , Integrases/metabolism , Receptors, Estrogen/metabolism , Recombination, Genetic/genetics , Age Factors , Animals , Cells, Cultured , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Sex Factors
9.
Gels ; 3(3)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-30920527

ABSTRACT

Adhesive processes in aqueous media play a crucial role in nature and are important for many technological processes. However, direct quantification of adhesion still requires expensive instrumentation while their sample throughput is rather small. Here we present a fast, and easily applicable method on quantifying adhesion energy in water based on interferometric measurement of polymer microgel contact areas with functionalized glass slides and evaluation via the Johnson⁻Kendall⁻Roberts (JKR) model. The advantage of the method is that the microgel matrix can be easily adapted to reconstruct various biological or technological adhesion processes. Here we study the suitability of the new adhesion method with two relevant examples: (1) antibody detection and (2) soil release polymers. The measurement of adhesion energy provides direct insights on the presence of antibodies showing that the method can be generally used for biomolecule detection. As a relevant example of adhesion in technology, the antiadhesive properties of soil release polymers used in today's laundry products are investigated. Here the measurement of adhesion energy provides direct insights into the relation between polymer composition and soil release activity. Overall, the work shows that polymer hydrogel particles can be used as versatile adhesion sensors to investigate a broad range of adhesion processes in aqueous media.

SELECTION OF CITATIONS
SEARCH DETAIL
...