Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(11): 7698-7710, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641357

ABSTRACT

The most suitable light intensity for cows during nighttime has not been thoroughly investigated. Recommendations on the night-time lighting regimen on dairy farms differ between countries and range from light throughout the night to darkness to allow the animals a rest from artificial light. Commercial actors recommend red light for night-time lighting in cattle barns to facilitate livestock supervision with minimum disturbance for the animals. However, little is known about how light intensity, spectrum, and uniformity affect the ability of cows to navigate their indoor environment. Thus, in a change-over study with 12 pregnant, nonlactating dairy cows, we observed how the cows walked through an obstacle course under different light treatments. Obstacles were positioned differently for every run, to present a novel challenge for each light environment. Fourteen different light treatments were tested, involving intensity ranging from <0.01 (darkness) to 4.49 µmol m-2 s-1, high or low uniformity, and white or red color. Light was characterized in terms of illuminance, photon flux density, spectral composition, and uniformity. Additionally, assessment of the environmental light field was used to describe each lighting condition from a bovine and human perspective. Data were analyzed in a generalized mixed model to assess whether lighting conditions affected cow walking speed or stride rate. Pair-wise post hoc comparisons showed that the cows walked at a slower speed in nonuniform red light compared with uniform white light or uniform red light. Interestingly, darkness did not alter walking speed or stride rate. The odds of different behaviors occurring were not affected by lighting conditions. In conclusion, darkness did not affect the ability of cows to navigate through the obstacle course, but medium-intensity, nonuniform red light affected their speed. Hence, cows do not necessarily need night-time lighting to navigate, even in a test arena with obstacles blocking their way, but nonuniform light distribution may have an effect on their movements.

2.
Mol Psychiatry ; 23(4): 904-913, 2018 04.
Article in English | MEDLINE | ID: mdl-27956743

ABSTRACT

Genetic susceptibility and environmental factors (such as stress) can interact to affect the likelihood of developing a mood disorder. Stress-induced changes in the hippocampus have been implicated in mood disorders, and mutations in several genes have now been associated with increased risk, such as brain-derived neurotrophic factor (BDNF). The hippocampus has important anatomical subdivisions, and pyramidal neurons of the vulnerable CA3 region show significant remodeling after chronic stress, but the mechanisms underlying their unique plasticity remain unknown. This study characterizes stress-induced changes in the in vivo translating mRNA of this cell population using a CA3-specific enhanced green fluorescent protein (EGFP) reporter fused to the L10a large ribosomal subunit (EGFPL10a). RNA-sequencing after isolation of polysome-bound mRNAs allows for cell-type-specific, genome-wide characterization of translational changes after stress. The data demonstrate that acute and chronic stress produce unique translational profiles and that the stress history of the animal can alter future reactivity of CA3 neurons. CA3-specific EGFPL10a mice were then crossed to the stress-susceptible BDNF Val66Met mouse line to characterize how a known genetic susceptibility alters both baseline translational profiles and the reactivity of CA3 neurons to stress. Not only do Met allele carriers exhibit distinct levels of baseline translation in genes implicated in ion channel function and cytoskeletal regulation, but they also activate a stress response profile that is highly dissimilar from wild-type mice. Closer examination of genes implicated in the mechanisms of neuroplasticity, such as the NMDA and AMPA subunits and the BDNF pathway, reveal how wild-type mice upregulate many of these genes in response to stress, but Met allele carriers fail to do so. These profiles provide a roadmap of stress-induced changes in a genetically homogenous population of hippocampal neurons and illustrate the profound effects of gene-environment interactions on the translational profile of these cells.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/physiology , Pyramidal Cells/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , CA3 Region, Hippocampal/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics , Neurons/metabolism , Polymorphism, Single Nucleotide/genetics , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...