Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Small ; : e2311635, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703033

ABSTRACT

Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.

2.
ACS Appl Polym Mater ; 5(3): 2079-2087, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37427013

ABSTRACT

The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through ex situ quantification by reference-free grazing incidence X-ray fluorescence. More qualitative depth distribution results were validated by means of X-ray photoelectron spectroscopy and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy.

3.
Microsc Microanal ; 28(1): 185-195, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35042572

ABSTRACT

Colloidal nanosphere monolayers­used as a lithography mask for site-controlled material deposition or removal­offer the possibility of cost-effective patterning of large surface areas. In the present study, an automated analysis of scanning electron microscopy (SEM) images is described, which enables the recognition of the individual nanospheres in densely packed monolayers in order to perform a statistical quantification of the sphere size, mask opening size, and sphere-sphere separation distributions. Search algorithms based on Fourier transformation, cross-correlation, multiple-angle intensity profiling, and sphere edge point detection techniques allow for a sphere detection efficiency of at least 99.8%, even in the case of considerable sphere size variations. While the sphere positions and diameters are determined by fitting circles to the spheres edge points, the openings between sphere triples are detected by intensity thresholding. For the analyzed polystyrene sphere monolayers with sphere sizes between 220 and 600 nm and a diameter spread of around 3% coefficients of variation of 6.8­8.1% for the opening size are found. By correlating the mentioned size distributions, it is shown that, in this case, the dominant contribution to the opening size variation stems from nanometer-scale positional variations of the spheres.

4.
Beilstein J Nanotechnol ; 12: 222-231, 2021.
Article in English | MEDLINE | ID: mdl-33728240

ABSTRACT

A dark-field scanning transmission ion microscopy detector was designed for the helium ion microscope. The detection principle is based on a secondary electron conversion holder with an exchangeable aperture strip allowing its acceptance angle to be tuned from 3 to 98 mrad. The contrast mechanism and performance were investigated using freestanding nanometer-thin carbon membranes. The results demonstrate that the detector can be optimized either for most efficient signal collection or for maximum image contrast. The designed setup allows for the imaging of thin low-density materials that otherwise provide little signal or contrast and for a clear end-point detection in the fabrication of nanopores. In addition, the detector is able to determine the thickness of membranes with sub-nanometer precision by quantitatively evaluating the image signal and comparing the results with Monte Carlo simulations. The thickness determined by the dark-field transmission detector is compared to X-ray photoelectron spectroscopy and energy-filtered transmission electron microscopy measurements.

5.
Ultramicroscopy ; 219: 113118, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33126186

ABSTRACT

Differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM) allows for measuring electric and magnetic fields in solids on scales ranging from picometres to micrometres. The DPC technique mainly uses the direct beam, which is deflected by the electric and magnetic fields of the specimen and measured with a beam position sensitive detector. The beam deflection and thus the DPC signal is strongly influenced by specimen thickness, specimen tilt and lens aberrations. Understanding these influences is critical for a solid interpretation and quantification of contrasts in DPC images. To this end, the present study employs DPC-STEM image simulations of SrTiO3 [001] at atomic resolution to analyse the influence of lens aberrations, specimen tilt and thickness and also to give a guideline for the detection of parameters affecting the contrast by performing an analysis of associated scattergrams. Simulations are obtained using the multislice algorithm implemented in the Dr. Probe software with conditions corresponding to a JEOL ARM200F microscope equipped with an octa-segmented annular detector, but results should be similar for other microscopes. Simulations show that due to a non-rigid shift of the detected intensity distribution correct values of projected potentials of specimens thicker than one unit-cell cannot be determined. Regarding the impact of residual lens aberrations, it is found that the shape of the lens aberration phase function determines the symmetry and features in the DPC image. Specimen tilt leads to an elongation of features perpendicular to the tilt axis. The results are confirmed by comparing simulated with experimental DPC images of Si [110] yielding good agreement. Overall, a high sensitivity of DPC-STEM imaging to lens aberrations, specimen tilt and diffraction effects is evidenced.

6.
Nanomaterials (Basel) ; 10(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941037

ABSTRACT

Block copolymer (BCP) self-assembly is a promising tool for next generation lithography as microphase separated polymer domains in thin films can act as templates for surface nanopatterning with sub-20 nm features. The replicated patterns can, however, only be as precise as their templates. Thus, the investigation of the morphology of polymer domains is of great importance. Commonly used analytical techniques (neutron scattering, scanning force microscopy) either lack spatial information or nanoscale resolution. Using advanced analytical (scanning) transmission electron microscopy ((S)TEM), we provide real space information on polymer domain morphology and interfaces between polystyrene (PS) and polymethylmethacrylate (PMMA) in cylinder- and lamellae-forming BCPs at highest resolution. This allows us to correlate the internal structure of polymer domains with line edge roughnesses, interface widths and domain sizes. STEM is employed for high-resolution imaging, electron energy loss spectroscopy and energy filtered TEM (EFTEM) spectroscopic imaging for material identification and EFTEM thickness mapping for visualisation of material densities at defects. The volume fraction of non-phase separated polymer species can be analysed by EFTEM. These methods give new insights into the morphology of polymer domains the exact knowledge of which will allow to improve pattern quality for nanolithography.

7.
RSC Adv ; 10(70): 42930-42937, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-35514879

ABSTRACT

The attachment of homoleptic Ru bis-terpy complexes on graphene oxide significantly improved the photocatalytic activity of the complexes. These straightforward complexes were applied as photocatalysts in a Heck reaction. Due to covalent functionalization on graphene oxide, which functions as an electron reservoir, excellent yields were obtained. DFT investigations of the charge redistribution revealed efficient hole transfer from the excited Ru unit towards the graphene oxide.

8.
Nanotechnology ; 31(9): 095701, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31703211

ABSTRACT

Zinc oxide (ZnO) hollow spheres with defined morphology and micro-/nanostructure are prepared by a hydrothermal synthesis approach. The materials possess fine-leaved structures at their particle surface (nanowall hollow micro spheres). Morphology control is achieved by citric acid used as an additive in variable relative quantities during the synthesis. The structure formation is studied by various time-dependent ex situ methods, such as scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The fine-leaved surface structure is characterized by high-resolution transmission electron microscopy techniques (HRTEM, STEM), using a high-angle annular dark field detector, as well as by differential phase contrast analysis. In-depth structural characterization of the nanowalls by drop-by-drop ex situ FE-SEM analysis provides insight into possible structure formation mechanisms. Further investigation addresses the thermal stability of the particle morphology and the enhancement of the surface-to-volume ratio by heat treatment (examined by N2 physisorption).

9.
Nanotechnology ; 30(22): 225302, 2019 May 31.
Article in English | MEDLINE | ID: mdl-30759427

ABSTRACT

Block copolymer lithography allows for the large-area patterning of surfaces with self-assembled nanoscale features. The created nanostructured polymer films can be applied as masks in common lithography processing steps, such as lift-off and etching for pattern replication and transfer. In this work, we discuss an approach to improve the pattern replication efficiency by modification of the polymer mask prior to lithographical use by means of an O2/Ar plasma treatment. We present a much better quality of pattern replication without loss of features, along with a precise tunability of feature sizes, that can be achieved by short mask treatment. We point out a correlation between nanopore position within the ordered arrays, expressed by its coordination number, the nanopore shape and the replication efficiency. Our experimental strategy to explain these correlations combines the indirect investigation of patterns replicated from the modified polymer masks and direct investigation of the mask top and bottom. Pattern replication is performed either in the form of gold nanodot arrays created via lift-off or nanopores transferred into a SiO2 substrate by reactive ion etching. The direct analysis of free polymer membranes released from the substrate reveals the nanopore shape at the mask top and bottom surfaces.

10.
Nanoscale ; 11(9): 3958-3967, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30762858

ABSTRACT

In a comparative study we investigate the carrier-phonon coupling in CdSe based core-only and hetero 2D as well as 0D nanoparticles. We demonstrate that the coupling can be strongly tuned by the lateral size of nanoplatelets, while, due to the weak lateral confinement, the transition energies are only altered by tens of meV. Our analysis shows that an increase in the lateral platelet area results in a strong decrease in the phonon coupling to acoustic modes due to deformation potential interaction, yielding an exciton deformation potential of 3.0 eV in line with theory. In contrast, coupling to optical modes tends to increase with the platelet area. This cannot be explained by Fröhlich interaction, which is generally dominant in II-VI materials. We compare CdSe/CdS nanoplatelets with their equivalent, spherical CdSe/CdS nanoparticles. Universally, in both systems the introduction of a CdS shell is shown to result in an increase of the average phonon coupling, mainly related to an increase of the coupling to acoustic modes, while the coupling to optical modes is reduced with increasing CdS layer thickness. The demonstrated size and CdS overgrowth tunability has strong implications for applications like tuning carrier cooling and carrier multiplication - relevant for solar energy harvesting applications. Other implications range from transport in nanosystems e.g. for field effect transistors or dephasing control. Our results open up a new toolbox for the design of photonic materials.

11.
ACS Nano ; 12(9): 9476-9483, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30192515

ABSTRACT

We investigate the impact of shell growth on the carrier dynamics and exciton-phonon coupling in CdSe-CdS core-shell nanoplatelets with varying shell thickness. We observe that the recombination dynamics can be prolonged by more than one order of magnitude, and analyze the results in a global rate model as well as with simulations including strain and excitonic effects. We reveal that type I band alignment in the hetero platelets is maintained at least up to three monolayers of CdS, resulting in approximately constant radiative rates. Hence, observed changes of decay dynamics are not the result of an increasingly different electron and hole exciton wave function delocalization as often assumed, but an increasingly better passivation of nonradiative surface defects by the shell. Based on a global analysis of time-resolved and time-integrated data, we recover and model the temperature dependent quantum yield of these nanostructures and show that CdS shell growth leads to a strong enhancement of the photoluminescence quantum yield. Our results explain, for example, the very high lasing gain observed in CdSe-CdS nanoplatelets due to the type I band alignment that also makes them interesting as solar energy concentrators. Further, we reveal that the exciton-LO-phonon coupling is strongly tunable by the CdS shell thickness, enabling emission line width and coherence length control.

12.
Nanoscale ; 10(21): 10005-10017, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29774901

ABSTRACT

Bottom-up patterning techniques allow for the creation of surfaces with ordered arrays of nanoscale features on large areas. Two bottom-up techniques suitable for the formation of regular nanopatterns on different length scales are nanosphere lithography (NSL) and block copolymer (BCP) lithography. In this paper it is shown that NSL and BCP lithography can be combined to easily design hierarchically nanopatterned surfaces of different materials. Nanosphere lithography is used for the pre-patterning of surfaces with antidots, i.e. hexagonally arranged cylindrical holes in thin films of Au, Pt and TiO2 on SiO2, providing a periodic chemical and topographical contrast on the surface suitable for templating in subsequent BCP lithography. PS-b-PMMA BCP is used in the second self-assembly step to form hexagonally arranged nanopores with sub-20 nm diameter within the antidots upon microphase separation. To achieve this the microphase separation of BCP on planar surfaces is studied, too, and it is demonstrated for the first time that vertical BCP nanopores can be formed on TiO2, Au and Pt films without using any neutralization layers. To explain this the influence of surface energy, polarity and roughness on the microphase separation is investigated and discussed along with the wetting state of BCP on NSL-pre-patterned surfaces. The presented novel route for the creation of advanced hierarchical nanopatterns is easily applicable on large-area surfaces of different materials. This flexibility makes it suitable for a broad range of applications, from the morphological design of biocompatible surfaces for life science to complex pre-patterns for nanoparticle placement in semiconductor technology.

13.
Langmuir ; 34(49): 14757-14765, 2018 12 11.
Article in English | MEDLINE | ID: mdl-29754490

ABSTRACT

DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Adsorption , Gold/chemistry , Nanopores , Nucleic Acid Conformation , Silicon Dioxide/chemistry
14.
Sci Rep ; 8(1): 5843, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29643400

ABSTRACT

Dodecyl amine edge functionalized few-layer graphene oxide quantum dots were synthesized in good yields. The covalent functionalization was demonstrated with NMR and AFM-IR. The resulting structure and particle size was measured with AFM and HRTEM. The thermal stability of the compound was investigated and showed a stability of up to 220 °C. The modified graphene oxide quantum dots showed excellent solubility in various organic solvents, including ethers, methanol, toluene, n-hexane, heptane, xylene, dichloromethane and toluene. The stability of a resulting toluene solution was also proven by static light scattering measurements over several days. The excellent solubility gives the possibility of an efficient and fast spray application of the functionalized graphene oxide quantum dots to steel surfaces. Hence, the macroscopic friction behavior was investigated with a Thwing-Albert FP-2250 friction tester. A thin film of the dodecyl amine functionalized graphene oxide quantum dots on steel lowered the friction coefficient from 0.17 to 0.11 and revealed a significant corrosion inhibition effect.

15.
Langmuir ; 34(14): 4264-4270, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29578714

ABSTRACT

Site-specific formation of nanoscaled protein structures is a challenging task. Most known structuring methods are either complex and hardly upscalable or do not apply to biological matter at all. The presented combination of enzyme mediated autodeposition and nanosphere lithography provides an easy-to-apply approach for the buildup of protein nanostructures over a large scale. The key factor is the tethering of enzyme to the support in designated areas. Those areas are provided via prepatterning of enzymatically active antidots with variable diameters. Enzymatically triggered protein addressing occurs exclusively at the intended areas and continues until the entire active area is coated. After this, the reaction self-terminates. The major advantage of the presented method lies in its easy applicability and upscalability. Large-area structuring of entire support surfaces with features on the nanometer scale is performed efficiently and without the necessity of harsh conditions. These are valuable premises for large-scale applications with potentials in biosensor technology, nanoelectronics, and life sciences.


Subject(s)
Nanostructures , Nanospheres , Printing , Proteins
16.
Opt Express ; 25(19): 22608-22619, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041568

ABSTRACT

Switchable two dimensional liquid crystal diffraction gratings are promising candidates in beam steering devices, multiplexers and holographic displays. For these areas of applications a high degree of integration in optical systems is much sought-after. In the context of diffraction gratings this means that the angle of diffraction should be rather high, which typically poses a problem as the fabrication of small grating periods is challenging. In this paper, we propose the use of nanosphere lithography (NSL) for the fabrication of two-dimensionally structured electrodes with a periodicity of a few micrometers. NSL is based on the self-assembly of micro- or nanometer sized spheres into monolayers. It allows for easy substrate structuring on wafer scale. The manufactured electrode is combined with a liquid crystalline polymer-stabilized blue phase, which facilitates sub-millisecond electrical switching of the diffraction efficiency at a diffraction angle of 21.4°.

17.
ACS Appl Mater Interfaces ; 9(9): 8371-8377, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28234444

ABSTRACT

The lattice mismatch between CdSe and ZnSe is known to limit the thickness of ZnSe/CdSe quantum wells on GaAs (001) substrates to about 2-3 monolayers. We demonstrate that this thickness can be enhanced significantly by using In0.12Ga0.88As pseudo substrates, which generate alternating tensile and compressive strains in the ZnSe/CdSe/ZnSe layers resulting in an efficient strain compensation. This method enables to design CdSe/ZnSe quantum wells with CdSe thicknesses ranging from 1 to 6 monolayers, covering the whole visible spectrum. The strain compensation effect is investigated by high resolution transmission electron microscopy and supported by molecular statics simulations. The model approach with the supporting experimental measurements is sufficiently general to be also applied to other highly mismatched material combinations for the design of advanced strained heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...