Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cells ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36497123

ABSTRACT

Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.


Subject(s)
Cognitive Dysfunction , Monomeric GTP-Binding Proteins , Animals , Mice , Mice, Inbred C57BL , Environment , Cognitive Dysfunction/genetics , Cognitive Dysfunction/therapy , Hippocampus , Cognition , Membrane Proteins , Microfilament Proteins , Nerve Tissue Proteins
2.
Cells ; 11(3)2022 02 06.
Article in English | MEDLINE | ID: mdl-35159375

ABSTRACT

Inflammation is considered a possible cause of cognitive decline during aging. This study investigates the influence of physical activity and social isolation in old mice on their cognitive functions and inflammation. The Barnes maze task was performed to assess spatial learning and memory in 3, 9, 15, 24, and 28 months old male C57BL/6 mice as well as following voluntary wheel running (VWR) and social isolation (SI) in 20 months old mice. Inflammatory gene expression was analyzed in hippocampal and colonic samples by qPCR. Cognitive decline occurs in mice between 15 and 24 months of age. VWR improved cognitive functions while SI had negative effects. Expression of inflammatory markers changed during aging in the hippocampus (Il1a/Il6/S100b/Iba1/Adgre1/Cd68/Itgam) and colon (Tnf/Il6/Il1ra/P2rx7). VWR attenuates inflammaging specifically in the colon (Ifng/Il10/Ccl2/S100b/Iba1), while SI regulates intestinal Il1b and Gfap. Inflammatory markers in the hippocampus were not altered following VWR and SI. The main finding of our study is that both the hippocampus and colon exhibit an increase in inflammatory markers during aging, and that voluntary wheel running in old age exclusively attenuates intestinal inflammation. Based on the existence of the gut-brain axis, our results extend therapeutic approaches preserving cognitive functions in the elderly to the colon.


Subject(s)
Aging , Brain , Colon , Inflammation , Motor Activity , Animals , Male , Mice , Mice, Inbred C57BL
3.
Cells ; 11(4)2022 02 11.
Article in English | MEDLINE | ID: mdl-35203276

ABSTRACT

Extracellular vesicles (EVs), including small EVs (sEVs), are involved in neuroinflammation and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Yet, increased neuroinflammation can also be detected in the aging brain, and it is associated with increased glial activation. Changes in EV concentration are reported in aging tissues and senescence cells, suggesting a role of EVs in the process of aging. Here, we investigated the effect of peripheral sEVs from aged animals on neuroinflammation, specifically on glial activation. sEVs were isolated from the peripheral blood of young (3 months) and aged (24 months) C57BL/6J wildtype mice and injected into the peripheral blood from young animals via vein tail injections. The localization of EVs and the expression of selected genes involved in glial cell activation, including Gfap, Tgf-ß, Cd68, and Iba1, were assessed in brain tissue 30 min, 4 h, and 24 h after injection. We found that sEVs from peripheral blood of aged mice but not from young mice altered gene expression in the brains of young animals. In particular, the expression of the specific astrocyte marker, Gfap, was significantly increased, indicating a strong response of this glial cell type. Our study shows that sEVs from aged mice can pass the blood-brain barrier (BBB) and induce glial cell activation.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Alzheimer Disease/metabolism , Animals , Astrocytes , Blood-Brain Barrier/metabolism , Extracellular Vesicles/metabolism , Mice , Mice, Inbred C57BL
4.
Glia ; 69(8): 2006-2022, 2021 08.
Article in English | MEDLINE | ID: mdl-33942391

ABSTRACT

Following stroke, neuronal death takes place both in the infarct region and in brain areas distal to the lesion site including the hippocampus. The hippocampus is critically involved in learning and memory processes and continuously generates new neurons. Dysregulation of adult neurogenesis may be associated with cognitive decline after a stroke lesion. In particular, proliferation of precursor cells and the formation of new neurons are increased after lesion. Within the first week, many new precursor cells die during development. How dying precursors are removed from the hippocampus and to what extent phagocytosis takes place after stroke is still not clear. Here, we evaluated the effect of a prefrontal stroke lesion on the phagocytic activity of microglia in the dentate gyrus (DG) of the hippocampus. Three-months-old C57BL/6J mice were injected once with the proliferation marker BrdU (250 mg/kg) 6 hr after a middle cerebral artery occlusion or sham surgery. The number of apoptotic cells and the phagocytic capacity of the microglia were evaluated by means of immunohistochemistry, confocal microscopy, and 3D-reconstructions. We found a transient but significant increase in the number of apoptotic cells in the DG early after stroke, associated with impaired removal by microglia. Interestingly, phagocytosis of newly generated precursor cells was not affected. Our study shows that a prefrontal stroke lesion affects phagocytosis of apoptotic cells in the DG, a region distal to the lesion core. Whether disturbed phagocytosis might contribute to inflammatory- and maladaptive processes including cognitive impairment following stroke needs to be further investigated.


Subject(s)
Microglia , Stroke , Animals , Dentate Gyrus , Hippocampus/pathology , Mice , Mice, Inbred C57BL , Microglia/pathology , Neurogenesis/physiology , Phagocytosis , Stroke/pathology
5.
PLoS One ; 15(4): e0232145, 2020.
Article in English | MEDLINE | ID: mdl-32324822

ABSTRACT

Microorganisms are constantly interacting in a given environment by a constant exchange of signaling molecules. In timber, wood-decay fungi will come into contact with other fungi and bacteria. In naturally bleached wood, dark, pigmented lines arising from confrontation of two fungi often hint at such interactions. The metabolites (and pigment) exchange was investigated using the lignicolous basidiomycete Schizophyllum commune, and co-occurring fungi and bacteria inoculated directly on sterilized wood, or on media. In interactions with competitive wood degrading fungi, yeasts or bacteria, different competition strategies and communication types were observed, and stress reactions, as well as competitor-induced enzymes or pigments were analyzed. Melanin, indole, flavonoids and carotenoids were shown to be induced in S. commune interactions. The induced genes included multi-copper oxidases lcc1, lcc2, mco1, mco2, mco3 and mco4, possibly involved in both pigment production and lignin degradation typical for wood bleaching by wood-decay fungi.


Subject(s)
Schizophyllum/metabolism , Bacteria/metabolism , Pigments, Biological/metabolism , Secondary Metabolism/physiology , Wood/microbiology
6.
Hear Res ; 350: 133-138, 2017 07.
Article in English | MEDLINE | ID: mdl-28463806

ABSTRACT

The use of auditory reaction time is a reliable measure of loudness perception in both animals and humans with reaction times (RT) decreasing with increasing stimulus intensity. Since abnormal loudness perception is a common feature of hyperacusis, a potentially debilitating auditory disorder in which moderate-intensity sounds are perceived as uncomfortable or painfully loud, we used RT measures to assess rats for salicylate-induced hyperacusis. A previous study using an operant conditioning RT procedure found that high-dose sodium salicylate (SS) induced hyperacusis-like behavior, i.e., faster than normal RTs to moderate and high level sounds, when rats were tested with broadband noise stimuli. However, it was not clear from that study if salicylate induces hyperacusis-like behavior in a dose- or frequency-dependent manner. Therefore, the goals of the current study were to determine how RT-intensity functions were altered by different doses of salicylate, and, using tone bursts, to determine if salicylate induces hyperacusis-like behavior across the entire frequency spectrum or only at certain frequencies. Similar to previous physiological studies, we began to see faster than normal RTs for sounds 60 dB SPL and greater with salicylate doses of 150 mg/kg and higher; indicating the rats were experiencing hyperacusis at high salicylate doses. In addition, high-dose salicylate significantly reduced RTs across all stimulus frequencies tested which suggests that a central neural excitability mechanism may be a potential driver of salicylate-induced changes in loudness perception and hyperacusis.


Subject(s)
Behavior, Animal , Hyperacusis/psychology , Loudness Perception , Sodium Salicylate , Acoustic Stimulation , Animals , Conditioning, Operant , Disease Models, Animal , Female , Hyperacusis/chemically induced , Male , Rats, Sprague-Dawley , Reaction Time , Time Factors
7.
Data Brief ; 7: 93-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26958636

ABSTRACT

The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].

8.
Biochim Biophys Acta ; 1858(1): 57-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26449341

ABSTRACT

The mutation N188T in human connexin46 (hCx46) correlates with a congenital nuclear pulverulent cataract. This mutation is in the second extracellular loop, a domain involved in docking of gap junction hemichannels. To analyze the functional consequences of this mutation, we expressed hCx46N188T and the wild type (hCx46wt) in Xenopus oocytes and HeLa cells. In Xenopus oocytes, hemichannels formed by hCx46wt and hCx46N188T had similar electrical properties. Additionally, a Ca(2+) and La(3+) sensitive current was observed in HeLa cells expressing eGFP-labeled hCx46wt or eGFP-labeled hCx46N188T. These results suggest that the N188T mutation did not alter apparent expression and the membrane targeting of the protein. Cells expressing hCx46wt-eGFP formed gap junction plaques, but plaques formed by hCx46N188T were extremely rare. A reduced plaque formation was also found in cells cotransfected with hCx46N188T-eGFP and mCherry-labeled hCx46wt as well as in cocultured cells expressing hCx46N188T-eGFP and hCx46wt-mCherry. Dye transfer experiments in cells expressing hCx46N188T revealed a lower transfer rate than cells expressing hCx46wt. We postulate that the N188T mutation affects intercellular connexon docking. This hypothesis is supported by molecular modeling of hCx46 using the crystal structure of hCx26 as a template. The model indicated that N188 is important for hemichannel docking through formation of hydrogen bonds with the residues R180, T189 and D191 of the opposing hCx46. The results suggest that the N188T mutation hinders the docking of the connexons to form gap junction channels. Moreover, the finding that a glutamine substitution (hCx46N188Q) could not rescue the docking emphasizes the specific role of N188.


Subject(s)
Connexins/chemistry , Gap Junctions/metabolism , Xenopus laevis/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Calcium/metabolism , Cations, Divalent , Connexins/genetics , Connexins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gap Junctions/chemistry , Gap Junctions/ultrastructure , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Hydrogen Bonding , Ion Transport , Lanthanum/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Docking Simulation , Molecular Sequence Data , Mutation , Patch-Clamp Techniques , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Red Fluorescent Protein
9.
Environ Sci Pollut Res Int ; 22(24): 19342-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26002361

ABSTRACT

Groundwater microbiology with respect to different host rocks offers new possibilities to describe and map the habitat harboring approximately half of Earths' biomass. The Thuringian Basin (Germany) contains formations of the Permian (Zechstein) and Triassic (Muschelkalk and Buntsandstein) with outcrops and deeper regions at the border and central part. Hydro(geo)chemistry and bacterial community structure of 11 natural springs and 20 groundwater wells were analyzed to define typical patterns for each formation. Widespread were Gammaproteobacteria, while Bacilli were present in all wells. Halotolerant and halophilic taxa were present in Zechstein. The occurrence of specific taxa allowed a clear separation of communities from all three lithostratigraphic groups. These specific taxa could be used to follow fluid movement, e.g., from the underlying Zechstein or from nearby saline reservoirs into Buntsandstein aquifers. Thus, we developed a new tool to identify the lithostratigraphic origin of sources in mixed waters. This was verified with entry of surface water, as species not present in the underground Zechstein environments were isolated from the water samples. Thus, our tool shows a higher resolution as compared to hydrochemistry, which is prone to undergo fast dilution if water mixes with other aquifers. Furthermore, the bacteria well adapted to their respective environment showed geographic clustering allowing to differentiate regional aquifers.


Subject(s)
Groundwater/microbiology , Water Microbiology , Water Wells , Germany , Groundwater/analysis , Groundwater/chemistry , Microbiota/genetics , Molecular Typing , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Sodium Chloride/analysis
10.
J Bioenerg Biomembr ; 45(4): 409-19, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23800832

ABSTRACT

Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.


Subject(s)
Connexin 43/metabolism , Dipyridamole/pharmacology , Endothelial Cells/drug effects , Gap Junctions/drug effects , RNA, Messenger/metabolism , Cells, Cultured , Connexin 43/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gap Junctions/metabolism , Humans , Phosphorylation , RNA, Messenger/genetics
11.
FASEB J ; 18(11): 1309-11, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15208267

ABSTRACT

Accumulation of inflammatory mononuclear phagocytes in Alzheimer's senile plaques, a hallmark of the innate immune response to beta-amyloid fibrils, can initiate and propagate neurodegeneration characteristic of Alzheimer's disease. Phagocytes migrate toward amyloid beta-protein involving formyl peptide receptor like-1-dependent signaling. Using human peripheral blood monocytes in Boyden chamber micropore filter assays, we show that the amyloid beta-protein- and amyloid beta-precursor protein-induced migration was abrogated by dimethylsphingosine, a sphingosine kinase inhibitor. Amyloid beta-protein stimulated in monocytes the gene expression for sphingosine-1-phosphate receptors 2 and 5, but not 1, 3, and 4. FTY720 that acts as a sphingosine-1-phosphate receptor agonist after endogenous phosphorylation by sphingosine kinase, as well as various neuropeptides that are known to be monocyte chemoattractants, dose-dependently inhibited amyloid beta-protein-induced migration. These data demonstrate that the migratory effects of beta-amyloid in human monocytes involve spingosine-1-phosphate signaling. Whereas endogenous neuropeptides may arrest and activate monocytes at sites of high beta-amyloid concentrations, interference with the amyloid beta-protein-dependent sphingosine-1-phosphate pathway in monocytes by FTY720, a novel immunomodulatory drug, suggests that FTY720 may be efficacious in beta-amyloid-related inflammatory diseases.


Subject(s)
Amyloid beta-Peptides/pharmacology , Amyloid beta-Protein Precursor/pharmacology , Immunologic Factors/pharmacology , Leukocytes, Mononuclear/drug effects , Phosphotransferases (Alcohol Group Acceptor)/physiology , Propylene Glycols/pharmacology , Receptors, Lysosphingolipid/biosynthesis , Sphingosine/analogs & derivatives , 1-Methyl-3-isobutylxanthine/pharmacology , Androstadienes/pharmacology , Bombesin/pharmacology , Calcitonin Gene-Related Peptide/pharmacology , Cell Movement/drug effects , Chemotaxis, Leukocyte/drug effects , Cholera Toxin/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Fingolimod Hydrochloride , Gene Expression Regulation/drug effects , Heterotrimeric GTP-Binding Proteins/physiology , Humans , Indoles/pharmacology , Leukocytes, Mononuclear/cytology , Maleimides/pharmacology , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neuropeptides/pharmacology , Pertussis Toxin/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , RNA, Messenger/biosynthesis , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/physiology , Secretogranin II , Sphingosine/pharmacology , Staurosporine/pharmacology , Tyrphostins/pharmacology , Vasoactive Intestinal Peptide/pharmacology , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...